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A B S T R A C T

Vegetation restoration affects the stability of soil organic carbon (SOC) by changing the composition of soil
carbon pools, including active carbon (Ca), the labile pool of SOC; slow carbon (Cs), the physically stabilized pool
of SOC; and resistant carbon (Cr), the chemically stabilized pool of SOC. The aims of this study were to determine
how SOC pools changed during restoration of a subtropical forest and to what extent vegetation characteristics
and soil properties affected the changes in SOC pools. Soil samples were collected to 40 cm in four plant com-
munities along a restoration chronosequence: scrub-grassland (4–5 years), shrubs (10–12 years), coniferous and
broadleaved mixed forest (45–46 years), and evergreen broadleaved forest (90–91 years). Laboratory incuba-
tions were used to measure CO2 production during SOC mineralization, and acid hydrolysis was used to measure
Cr. The CO2 production and Cr data were fitted to a three-component first-order kinetic model to determine the
Ca and Cs. Pearson's correlations, stepwise multiple line regressions, and variation partitioning analysis were
used to determine the key factors that affected SOC pools. The results showed that vegetation restoration in-
creased the contents of SOC from 1.67 to 47.6 g kg−1, Ca from 0.03 to 0.35 g kg−1, Cs from 1.32 to 24.5 g kg−1,
and Cr from 0.33 to 22.8 g kg−1. During vegetation restoration, the increase in SOC was primarily due to carbon
(C) stored in stable pools (i.e., Cs or Cr), and the portion of Cr in total SOC increased markedly from 18.5 to
56.3%. Fine root biomass was the primary driver that controlled SOC pools during vegetation restoration. The C/
N ratio of litter had a greater effect on Ca and Cs than that of other factors, whereas the soil clay content
contributed secondarily to Cr. The results suggest that vegetation restoration increases not only the amounts of
SOC, Ca, Cs, and Cr but also the stability of the SOC pool in subtropical soil. The relatively rapid increases in Cs

and Cr following vegetation restoration played a crucial role in C sequestration. Therefore, strong measures to
preserve natural forests and facilitate vegetation restoration should be the primary approach to increase long-
term soil C sequestration in this region.

1. Introduction

The mechanisms of soil organic carbon (SOC) accumulation are
uncertain, partly because of the highly complex composition and forms
of SOC (von Lützow et al., 2007). SOC is a heterogeneous substance
composed of various organic materials that vary in content and stability
(Wiesmeier et al., 2014). Based on the decomposition rate and mean
residence time (MRT), SOC can be partitioned into three pools: active
(Ca), slow (Cs), and resistant (Cr) carbon (Tian et al., 2016; Xiao et al.,
2016). The Ca is composed of labile carbon (C), such as simple sugars,
organic acids, and lipids, and the most readily utilized by soil

microorganisms, with an MRT of days (Chen et al., 2018; Dikgwatlhe
et al., 2014). The Cs consists primarily of physically stabilized C, with
an MRT of 25–50 years (Cochran et al., 2007). The Cr is stored in the
soil as humus and chemically stabilized C and with an MRT of
1000–1500 years, is responsible for soil C sequestration and stability
(Lian et al., 2018; Liu et al., 2017). Soils with a high proportion of Cr

indicate relatively high biochemical stability of SOC and may favor
long-term C sequestration (Liu et al., 2017; Wiesmeier et al., 2014).
Therefore, to fully understand SOC dynamics and mechanisms of ac-
cumulation, the sizes and contributions of the different SOC pools
should be determined.
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Vegetation change is an important factor affecting SOC stocks and
accumulation (Ramesh et al., 2015; Wang et al., 2018; Zhao et al.,
2015). In vegetation restoration, plant species and community com-
position change gradually, which may have important impacts on the
content and stability of SOC by altering litter quality and quantity
(Ramesh et al., 2015), root architecture and exudates (Liu et al., 2014;
Zhu et al., 2016), and soil properties (Sá and Lal, 2009; Xie et al., 2013).
The changes in SOC during vegetation restoration may not be induced
by only one factor but by a variety of factors. Therefore, the SOC can
show the following responses to vegetation restoration: (1) continuous
increase; (2) no change; (3) decrease; and (4) first decrease and then
increase (Powers and Marín-Spiotta, 2017). Numerous studies have
focused on the responses of SOC (particularly SOC storage) to land use
changes (Francaviglia et al., 2017; Li et al., 2016b) and forest conver-
sions (Chen et al., 2018; Marchand, 2017). By contrast, relatively few
studies have investigated the dynamic changes in SOC pools and sta-
bility that occur during the succession from a scrub-grassland (an early
plant community) that is gradually restored to shrub, secondary forest,
and climax forest communities. In addition, the primary factors that
control SOC pools during such vegetation restoration have received less
attention.

In subtropical areas of China, most climax vegetation (i.e., ever-
green broadleaved forests) has been severely degraded or destroyed
because of long-term human disturbances and intensive land use ac-
tivities (Sun et al., 2014; Yang et al., 2009). The Chinese government
has pursued forestry ecology projects over the past two decades, pro-
moting the vegetation restoration of subtropical native forests (Xiang
et al., 2013). Therefore, a variety of secondary vegetation communities
consisting of diverse tree species have formed in subtropical China.

Under the specific climatic and soil conditions of subtropical China, a
secondary bare area forms after the clearance of a native evergreen
broadleaved forest or plantation, and the succession pathway is gen-
erally as follows. A scrub-grassland community dominated by herbs and
with a few shrubs appears after 2–3 years of natural restoration. After
10 years of natural restoration, a shrub community forms. Then, Pinus
massoniana Lamb. coniferous forest, P. massoniana mixed forest, and
deciduous evergreen broadleaved mixed forest gradually form, with the
appearance of some light-demanding pioneer trees that include conifer
tree species (such as P. massoniana) and deciduous broadleaved tree
species (such as Liquidambar formosana, Quercus acutissima, Choer-
ospondias axillaries, Alniphyllum fortunei). Ultimately, an evergreen
broadleaved forest is formed as light-demanding pioneer tree species
are gradually replaced by more shade-tolerant tree species, including
members of Fagaceae (e.g., Lithocarpus glaber, Cyclobalanopsis glauca),
Theaceae (e.g., Schima superba, Cleyera japonica), and Polygonaceae
(e.g., Cinnamomum camphora, Photinia davidsoniae, Litsea coreana) (Tang
et al., 2010a; Xiang and Fang, 2018). Based on the degree of restoration
and species composition, these secondary vegetation communities are
generally categorized as scrub-grassland, shrub, deciduous broadleaved
and mixed deciduous evergreen broadleaved forests, and evergreen
broadleaved forests along a restoration gradient (Xiang et al., 2016).
Because of the strong changes in aboveground vegetation and soil C
stock during this succession (Liu et al., 2015; Zhou et al., 2006), many
scientists have focused on the responses of SOC (Chen et al., 2018; Liu
et al., 2015; Song et al., 2017) and Ca (Xiao et al., 2016; Yang et al.,
2009). However, during vegetation restoration in subtropical China, the
variations in SOC pools and the mechanisms of SOC accumulation and
stability are not well understood (Liu et al., 2015; Sun et al., 2014).

N 

Fig. 1. Location and distribution of the four different vegetation communities. CF is the coniferous and broadleaved mixed forest, and EF is the evergreen broad-
leaved forest.
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To estimate the SOC sequestration potential and stability in sub-
tropical China, the changes in SOC pools during vegetation restoration
must be quantified and the mechanisms involved identified. To date,
the combination of acid hydrolysis, long-term laboratory incubation,
and a three-pool first-order kinetics model has been widely and suc-
cessfully applied to determine different SOC pools and predict SOC
dynamics in agriculture (Qian et al., 2013), in forests (Tian et al., 2016;
Yang et al., 2007), and under different land uses (Iqbal et al., 2009; Jha
et al., 2012). In this study, four distinct vegetation types were selected:
scrub-grassland, shrub, coniferous and broadleaved mixed forest (CF),
and evergreen broadleaved forest (EF). These vegetation types re-
present the four main stages during vegetation restoration in the Chi-
nese subtropics. The sizes of SOC pools were measured with a three-
pool first-order kinetics model, using the data obtained from laboratory
incubations of SOC mineralization and acid hydrolysis analysis. The
objective was to test the following two hypotheses: (1) vegetation re-
storation increases the SOC content and its pool sizes (i.e., Ca, Cr, and
Cs), but the increase is greater in Cr and Cs than that in Ca; and (2)
vegetation restoration promotes the stability of SOC. In addition, the
effects of litter and soil physicochemical properties on SOC pools and
stabilization were investigated.

2. Materials and methods

2.1. Study site and plant community description

This research was conducted in Changsha County (28°23′–24′N,
113°17′–27′E), Hunan Province, China (Fig. 1). The climate is humid
mid-subtropical monsoon, with an annual average precipitation of
1416.4 mm (primarily between April and August) and an annual mean
air temperature of 17.3 °C. Minimum and maximum air temperatures
are −10.3 °C in January and 39.8 °C in July and August, respectively.
The topography features a typical low hilly landscape, at an altitude of
55–260m a. s. l. with an average slope of 18–25°. The soils are well-
drained clay loam red soil, which originated from slate and shale rock
and are classified as Alliti-Udic Ferrosols in the Chinese Soil Taxonomy,
corresponding to Acrisol in the World Reference Base for Soil Resource
(IUSS Working Group WRB, 2006). Evergreen broadleaf forests are the
climax and primary vegetation but have been disturbed by human ac-
tivities (such as firewood collection) to various degrees. Natural forest
protection programs in the past two decades have resulted in a variety
of vegetation communities at different stages of restoration in this area.

In October 2015, four vegetation communities with a similar to-
pography (elevation, slope, and aspect) were selected to represent a
vegetation restoration gradient (using the method of space-for-time
substitution). The communities were the following:

(1) Scrub-grassland (4–5 years): Controlled burns and site preparation
were conducted in a native evergreen broadleaved forest in the
winter of 1965. Pinus massoniana plantations were established in
1966 with no fertilization supplied and were clear-cut in 1990. The
woodlands were repeatedly cut until 2012, and the vegetation has
naturally recovered. Well-grown herbs and some young shrubs
dominated the community at the time of the study, which re-
presented the early stage of restoration in the succession process of
the subtropical evergreen broadleaved forest.

(2) Shrub (10–12 years): The native evergreen broadleaved forest un-
derwent a prescribed burn in 1965 and was deforested to establish a
Cunninghamia lanceolata plantation in 1966, which was clear-cut in
1989. The woodlands were then logged every 3–5 years until 2004.
The vegetation naturally recovered to form a shrub community
with well-grown shrubs at the time of the study. The shrub com-
munity did not have arbor layers and herbaceous plants were re-
latively infrequent.

(3) Coniferous and broadleaved mixed forest (45–46 years) (CF): The
native evergreen broadleaved forest was deforested in the early

1970s and then naturally recovered to a coniferous and broad-
leaved mixed forest. The communities at the time of the study were
approximately 45 to 50 years old and had abundant seedlings and
saplings and relatively high plant density. However, the proportion
of large-diameter individuals was relatively low.

(4) Evergreen broadleaved forest (90–91 years) (EF): The native ever-
green broadleaved forest was well protected against human dis-
turbances and had a relatively stable structure.

In October 2015, plots were randomly established in the different
communities: four 20m×20m plots in the scrub-grassland and shrub
communities, and four 30m×30m plots in the CF and EF commu-
nities (Fig. 1). To investigate the floristic components and tree spatial
patterns of the forests, each plot (20m×20m) in the scrub-grassland
and shrub communities was subdivided into four subplots
(10m×10m), and each plot (30m×30m) in the CF and EF com-
munities was subdivided into nine subplots (10m×10m). Species
identity was recorded, and total height, height to the lowest live
branch, crown width, and diameter at breast height (DBH) were mea-
sured for all individuals with DBH≥ 1 cm in each plot. The Shannon
index (SI) was used to quantify the woody plant species diversity of
each plant community with formula (1) (Madonsela et al., 2018):

∑=
=

SI – P ln P
i 1

S

i i
(1)

where S is the total number of species in the community and Pi is the
relative frequency of species i in the community. Table 1 summarizes
the characteristics and site factors of each community.

2.2. Soil, fine root, and litter sampling

Soil samples were obtained in October 2016. In each permanent
plot, three sample points were randomly selected at different slope
positions. At each point, the litter was removed and soil samples were
collected at depths of 0–10, 10–20, 20–30, and 30–40 cm.
Simultaneously, the soil bulk density (BD) of each soil layer was de-
termined using a steel soil core with a 7 cm diameter and 5.2 cm high.

The soil samples from the three points from the same depth within a
plot were pooled to form a composite sample. Plant roots, debris, and
gravel were removed. A portion of each fresh soil sample was sieved
through a 2-mm mesh and kept at 5 °C to measure SOC mineralization.
The other portion of each fresh soil sample was air-dried and sieved
through a 2-mm mesh for soil particle size fractionation, 1-mm mesh for
soil pH, 0.25-mm mesh for SOC and total nitrogen (N), and 0.15-mm
mesh for Cr determinations.

A 1m×1m quadrat was set up at the center of each 10m×10m
subplot to determine litter biomass (LB). All litter was collected from
the ground in these quadrats and transported to the laboratory. The
litter was oven-dried at 75 °C to a constant weight, and the dry mass
was recorded. The LB of the four vegetation communities is summar-
ized in Table 2. The oven-dried litter was ground and sieved through a
0.25-mm mesh to determine the C and N contents.

The fine root biomass (FB) was obtained using the method sug-
gested by Liu et al. (2014). In brief, roots were sampled at four different
points (i.e., east, south, west, and north) from a soil sampling point. At
each point, root samples were collected at depths of 0–10, 10–20,
20–30, and 30–40 cm by using a steel auger (10 cm in diameter), placed
in plastic bags, and kept at 5 °C. In each permanent plot, 48 root sam-
ples were collected, resulting in 192 fine root samples in each plant
community. The root samples were soaked in water for 2 h and then
swirled in a 0.25-mm mesh to remove the soil and residues affixed to
the roots. All roots were divided into two diameter classes (i.e., ≤2mm
and > 2mm), and the fine roots (≤2mm) were oven-dried at 75 °C for
48 h to a constant weight to measure their dry mass. The FB was cal-
culated as follows:
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=
×

×

−FBM
π d

FB(kg ha ) 10
( /2)s

–1
1

2 (2)

where FBM is the fine root dry mass per steel auger and ds is the inner
diameter of the steel auger. The FB of the four vegetation communities
is summarized in Fig. 2.

2.3. Chemical analysis

Briefly, the litter C (LC) and N (LN) contents were measured via the
K2Cr2O7-H2SO4 oxidation method and the semimicro-Kjeldahl method,
respectively (Tang et al., 2010b). The litter nutrients of the four vege-
tation communities are summarized in Table 2. Soil pH was analyzed in
a soil-to-water (deionized) ratio of 1:2.5 using a pH meter (FE20,
Mettler Toledo, Switzerland). Soil total N content was determined using
a semimicro-Kjeldahl method (Deng et al., 2013). Clay content (soil
particle size fraction < 0.002mm) was measured by a combined
sieve/hydrometer method (Li et al., 2016a). Soil BD was calculated
using weights of the dried soil samples and the volume of the steel soil
core. The soil physicochemical properties of the four vegetation com-
munities are summarized in Table 3.

SOC contents were determined by the K2Cr2O7-H2SO4 oxidation
method (Deng et al., 2013). The Cr content in soil samples was obtained
using the method suggested by Paul et al. (2006). In brief, 1 g of oven-
dried, sieved (< 0.15mm) soil sample was digested with 25mL of
6mol L−1 HCl at 110 °C for 18 h. After cooling, the digested soil sam-
ples were washed with deionized water to remove excess Cl−, dried at
60 °C, and measured by the K2Cr2O7-H2SO4 oxidation method.

2.4. Laboratory incubation

Long-term laboratory incubations, which measure CO2 emissions
from SOC mineralization, offer a biological approach to differentiate Ca

and Cs pools, whereby the Ca pool is rapidly mineralized by soil en-
zymes and microbes and the subsequent Cs pool is more slowly mi-
neralized (Cochran et al., 2007; Iqbal et al., 2009; Qian et al., 2013).
SOC mineralization was determined by the laboratory incubation
method (Paul et al., 1999): a 50 g sample of fresh soil was incubated in
a 500mL conical flask at 35 °C for 94 days. During the incubation, the
soil moisture was maintained at 60% water-holding capacity by adding
distilled water, to simulate the average field moisture condition. A vial
containing 10mL of 0.2 mol L−1 NaOH was placed in each flask, and
the flasks were sealed with rubber stoppers and placed in an incubator.
For each soil sample, 2 replicates were incubated together. The same
vials were removed over 3, 6, 9, 13, 17, 21, 28, 35, 42, 49, 64, 79, and
94 days after initiating the incubation and titrated with 0.1mol L−1

potassium acid phthalate (C8H5KO4), after first adding 3mL of
1.5 mol L−1 BaCl2 with phenolphthalein as an indicator. The amount of
CO2-C evolved was calculated as follows:

− − =
× −

×
CO C c V V

W k
(g kg 1) 6 ( )

2
0 1

(3)

where V0 and V1 are the respective volumes of C8H5KO4 consumed for
titrating NaOH in the control and amended soil samples (mL); c is the
normality of C8H5KO4 (mol L−1); W is the weight of the fresh soil
sample (g); and k is the coefficient for the conversion of fresh soil to
dried soil.

However, laboratory incubations alone are insufficient for de-
termining the size and turnover rate of the Cr pool (Paul et al., 2006).
To obtain information on the Cr pool, the most common chemical
method is an acid hydrolysis using 6mol L−1 HCl; the hydrolysable
fraction represents the Cr pool (Lian et al., 2018; Rovira and Vallejo,
2007). Modeling SOC dynamics is also an effective tool for predicting
and distinguishing the various C pools (Smith et al., 2012): a three-pool
first-order kinetics model can accurately predict dynamic changes in
the SOC pool (Yang et al., 2007). Paul et al. (1999) successfully defined
Ca, Cs, and Cr pool sizes and SOC dynamics by using a combined method
involving long-term laboratory incubation of soils and CO2 measure-
ments, acid hydrolysis, and a three-pool first-order kinetics model.
Others have coupled lab incubations with an acid hydrolysis (Fortuna
et al., 2003; Paul et al., 2001), but Paul et al. (2006) provide convincing
evidence that such an approach is more useful for determining SOC
pools than other methods (e.g., 13C, 14C, and DAYCENT model).

SOC pools are generally divided into Ca, Cs, and Cr pools according
to the decomposition rate and turnover time of SOC. The size and ki-
netics of these SOC pools were determined using the CO2-C evolved
from SOC mineralization during the 94-d laboratory incubation. Each
pool size was estimated by curve-fitting the CO2-C evolved per unit of
time using a three-component first-order kinetic model (Jha et al.,
2012):

= + +− − −C C e C e C eSOC a
k t

s
k t

r
k ta s r (4)

where CSOC is the total SOC at time t (days); Ca, Cs, and Cr are the size of
active, slow, and resistant carbon pools (g kg−1), respectively; ka, ks,

Table 2
Litter biomass and nutrient characteristics of the four plant communities (stages) during vegetation restoration.

Restoration stage Litter biomass (kg ha−1) C content in litter layer (g kg−1) N content in litter layer (g kg−1) C/N in litter layer

Scrub-grassland (4–5 years) 1568 ± 928a 315 ± 25.3 ac 9.8 ± 0.3a 35.8 ± 2.6a
Shrub (10–12 years) 6280 ± 851b 277 ± 33.3a 11.2 ± 0.9a 26.0 ± 0.2b
Coniferous and broadleaved mixed forest (45–46 years) 7085 ± 1752b 424 ± 8.6b 11.5 ± 0.5a 38.0 ± 1.6a
Evergreen broadleaved forest (90–91 years) 7795 ± 875b 332 ± 53.9c 14.0 ± 0.2b 23.9 ± 3.5b

Values are the mean ± standard deviation (n=4). Different letters indicate differences between restoration stages for the same soil layer that are significant at
P < 0.05.
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Fig. 2. Fine root biomass by depth (cm) in the four different vegetation com-
munities in subtropical China. SG is the scrub-grassland, CF is the coniferous
and broadleaved mixed forest, and EF is the evergreen broadleaved forest.
Different letters indicate that the differences between different stages of vege-
tation restoration are significant at P < 0.05. Values are the mean ± standard
deviation.
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and kr are the pool decay constants (day−1), respectively; and k is the
reciprocal of mean residence time (MRT−1).

The turnover time of each pool is influenced by differences in
temperatures between the laboratory and field. Because Cr typically has
a low turnover rate, theMRT in the field (MRTfield) of Cr was assumed to
be 1000 years, which would have little influence on the other two pools
(Ca and Cs) and the model simulations. The laboratory MRT (MRTlab) of
Cr derived from the laboratory incubation was scaled to the average
annual temperature at the study site (MAT, °C) by using the tempera-
ture coefficient (Q10) and the MRTfield as follow:

=
−( )Q 2

MAT
10

25
10 (4)

=MRT MRT
Qlab

field

10 (5)

where MAT is 17 °C for the study site. The three parameters (ka, ks, and
Ca) were estimated by nonlinear regression. The Cs was defined as
Cs= CSOC− Ca− Cr.

2.5. Statistical analyses

The sizes of each C pool were fitted to the kinetics model by using a
nonlinear regression procedure. The differences in aboveground vege-
tation factors (SI, FB, LB, LC, LN, and the C/N ratio of litter (LC/LN)),
soil properties (C/N, pH, BD, and clay content), the daily amount of
SOC mineralization, and the size of SOC pools among the four re-
storation stages or soil layers were tested using one-way ANOVA with
the least significant difference (LSD) test. P < 0.05 was considered
statistically significant.

Pearson correlations were used to examine the relationships among
SOC pools and soil factors (C/N, pH, BD, and clay content) and vege-
tation factors (SI, FB, LB, LC, LN, and LC/LN). Stepwise multiple linear
regressions were performed to select those factors that significantly
affected the SOC pools. Furthermore, to understand the joint and in-
dependent contributions of these two categories (vegetation and soil
factors) to SOC and its pools, a variation partitioning analysis (VPA)
was performed using the R package ‘vegan’ v2.3–3. Before the VPA was
set up, the variance inflation factor (VIF) was calculated to select sui-
tably independent variables using the R package ‘car’ 2.1-2. The cri-
terion of VIF < 3 was used to remove those variables with strong
multicollinearity (Yang et al., 2017). All statistical analyses were per-
formed using R version 3.1.2 software (R Core Team, 2015).

3. Results

3.1. SOC mineralization in the four vegetation communities

The daily amount of SOC mineralization in the different stages of
vegetation restoration is shown in Fig. 3. The daily amount of SOC
mineralization reached a peak on the third day of the incubation, ra-
pidly declined between day 3 and 17, and then tended to stabilize after
17 days.

The daily amount of SOC mineralization varied with vegetation
stage and was significantly higher in the EF than that in the scrub-
grassland, shrub, and CF. However, the differences in the daily amount
of mineralization among the four restoration stages tended to decrease
with the increase in soil depth. Generally, the daily SOC amount of
mineralization declined with increasing soil depth in all vegetation
types (Fig. 3).

3.2. Contents of SOC, Ca, Cs, and Cr in the four vegetation communities

The restoration of vegetation markedly increased the content of SOC
and its pools (Fig. 4). The highest and lowest SOC contents were re-
corded in the EF (47.6 g kg−1) and scrub-grassland (1.67 g kg−1), re-
spectively. The SOC content in the EF was 3.89 to 9.87-fold higher thanTa
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that in the scrub-grassland. Significant differences in SOC pools among
the four vegetation types were also detected at all soil depths. For the
0–10 cm depth, the Ca content in the EF exceeded that in the scrub-
grassland, shrub, and CF by 0.32, 0.23, and 0.21 g kg−1, respectively.
However, no differences in Ca content were detected between the EF
and the CF in the other three soil layers. The Ca content in the EF was
2.68 to 9.78-fold higher than that in the scrub-grassland. The highest Cs

content was in the EF, which was 13.7–17.4, 4.54–7.24, 4.91–6.51, and
5.15–6.31 g kg−1 higher than that in the other vegetation types at 0–10,
10–20, 20–30, and 30–40 cm depths, respectively. The Cs content in the
EF was 3.37 to 5.78-fold higher than that in the scrub-grassland. The
highest Cr content was in the EF, which was 8.07–17.7, 2.70–6.37,
2.94–5.38, and 3.27–5.48 g kg−1 higher than that in the other vegeta-
tion types at 0–10, 10–20, 20–30, and 30–40 cm depths, respectively.
The Cr content in the EF was 4.48 to 17.8-fold higher than that in the

scrub-grassland.
The contents of SOC and its pools all decreased with soil depth

(Fig. 4). In the four restoration stages, the contents of SOC and its pools
were significantly higher in the 0–10 cm layer than those in the other
soil layers (P < 0.05), except for the Ca content in the scrub-grassland
and CF.

3.3. Contributions of Ca, Cs, and Cr to SOC in the four vegetation
communities

Over the course of restoration, the Ca contributed only 0.3–2.0% to
the SOC (Fig. 5). The Ca/SOC ratio in the 0–10 cm soil layer increased
with restoration, but the ratio decreased in the deeper soil layers. The
Cs/SOC ratio declined markedly from 58.6 to 79.6% in the scrub-
grassland to 43.2–53.4% in the CF and then increased slightly to

Fig. 5. The contributions (%) of active carbon (Ca), slow carbon (Cs), and resistant carbon (Cr) to SOC at four different depths (cm) in the different vegetation
communities in subtropical China. SG is the scrub-grassland, CF is the coniferous and broadleaved mixed forest, and EF is the evergreen broadleaved forest. Different
capital letters indicate differences between restoration stages that are significant at P < 0.05, whereas different lowercase letters indicate differences between soil
layers within the same restoration stage that are significant at P < 0.05. Values are the mean ± standard deviation (n= 4).
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51.1–57.8% in the EF (Fig. 5). The Cr/SOC ratio ranged from 18.5 to
41.1% in the scrub-grassland, increased to 46.9–56.3% in the CF, but
then slightly decreased to 41.6–48.1% in the EF.

The ratios of Ca, Cs, and Cr to SOC also varied significantly with soil
depth. The Ca/SOC ratio in the scrub-grassland, shrub, and CF com-
munities increased with depth, whereas the ratio in the EF decreased. In
the scrub-grassland and shrub community stages, the Cs/SOC ratio in-
creased and the Cr/SOC ratio decreased with depth, but in the CF and
EF, the same trends were observed in the top three layers (Fig. 5).

3.4. Factors influencing the SOC and its pools

The contents of SOC pools were significantly positively correlated
with soil clay content, SI (except Cs), LB, LN, and FB (P < 0.01) and
with the ratio LC/LN (P < 0.05), but the pool contents were sig-
nificantly negatively correlated with soil pH (P < 0.01). No significant
associations were detected between SOC pool contents and BD, soil C/N
ratio, or LC. Notably, the contents of the SOC pools were more strongly
associated with FB (r=0.833–0.907, P < 0.01) and LN
(r=0.864–0.935, P < 0.01) than with any other factors (Table 4).

Stepwise regression showed that FB and the LC/LN ratio together
explained 91.6% of the variation in Ca, of which FB explained 80.7%
and the LC/LN ratio explained 10.9%. Together, FB, LC/LN ratio, and
soil pH explained 90.4% of the variation in Cs, of which FB explained
66.7% and the LC/LN ratio explained 14.7%. Together, FB and soil clay
content explained 85.0% of the variation in Cr, of which FB explained
79.2% (Table 5).

Furthermore, the VPA revealed that the combination of vegetation
and soil factors of the four communities explained 94, 97, 96, and 88%
of the variation occurring in the SOC, Ca, Cs, and Cr, respectively
(Fig. 6). Whereas the vegetation factors alone explained 6–35% of this
variation, and the soil factors alone explained much less (4–15%), their
interaction explained 46–78% of the variation in SOC, Ca, Cs, and Cr

during the restoration process.

4. Discussion

4.1. Changes in SOC sequestration and stabilization during vegetation
restoration

In this study, the contents of SOC and its pools increased along the
vegetation restoration gradient, particularly under the conversion from
scrub-grassland to EF in the 0–10 cm layer. These results suggest that
soil acted as a C sink during vegetation restoration. Similarly, in the
conversion of grassland to primary forest, the contents of SOC increased
from 29.1 to 73.9 g kg−1 (Liu et al., 2015), and the natural restoration
of vegetation from pioneer weeds to climax forest caused increases in
contents of SOC and labile and nonlabile SOC (Zhao et al., 2015). The
conversion of grassland to a 34-year-old plantation and forest not only
developed the SOC stock but also increased the contents of active and
resistant C (Nath et al., 2018). Crow et al. (2009) suggest that as SOC
increases, it is primarily stored in the Cr pool, whereas the Ca pool tends
to remain small. In this study, the increment also varied for different
SOC pools during vegetation restoration. Across all restoration stages,
the smallest increment was in the Ca pool (0.02–0.32 g kg−1), compared
with the larger increments in the Cs (4.54–17.4 g kg−1) and Cr

(2.70–17.7 g kg−1) pools. Thus, during the vegetation restoration, the
increase in SOC was primarily stored in the more stable C pools (i.e., Cs

and Cr), which should contribute to C stabilization. These results

Table 4
Pearson correlation coefficients between the contents of SOC pools and soil physicochemical properties and vegetation features for the entire study area.

Items Soil Vegetation

C/N pH BD Clay SI FB LB LC LN LC/LN

SOC −0.134 −0.790⁎⁎ −0.397 0.751⁎⁎ 0.590⁎ 0.879⁎⁎ 0.761⁎⁎ −0.201 0.884⁎⁎ −0.613⁎

Ca −0.262 −0.759⁎⁎ −0.420 0.759⁎⁎ 0.612⁎ 0.907⁎⁎ 0.762⁎⁎ −0.186 0.935⁎⁎ –-0.619⁎

Cs −0.135 −0.756⁎⁎ −0.376 0.697⁎⁎ 0.552 0.833⁎⁎ 0.621⁎ −0.308 0.864⁎⁎ −0.621⁎

Cr −0.126 −0.801⁎⁎ −0.406 0.785⁎⁎ 0.610⁎ 0.900⁎⁎ 0.824⁎⁎ −0.077 0.877⁎⁎ −0.489

Ca is active carbon, Cs is slow carbon, Cr is resistant carbon, BD is bulk density, SI is the Shannon index, FB is fine root biomass, LB is floor litter biomass, LC is the
organic carbon content in litter, LN is the nitrogen content in litter, LC/LN is the ratio of C to N in litter. The sample size was n=16.

⁎ Significant at P < 0.05.
⁎⁎ Significant at P < 0.01.

Table 5
Stepwise multiple linear regressions for active carbon (Ca), slow carbon (Cs),
and resistant carbon (Cr) using belowground soil and aboveground vegetation
predictors during vegetation restoration.
P < 0.001 indicates that the final regression model was highly significant;

the sample size was n=16.

Response variable Predictor Adjusted R2 F P

Ca FB 0.807 51.2 < 0.001
FB, LC/LN 0.916 66.1 < 0.001

Cs FB 0.667 25.0 < 0.001
FB, LC/LN 0.814 27.3 < 0.001
FB, LC/LN, pH 0.904 38.8 < 0.001

Cr FB 0.792 46.8 < 0.001
FB, Clay 0.850 35.0 < 0.001
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support the first hypothesis of this study and further demonstrate that
the recovery of vegetation in this area could increase the amount of
stable SOC and benefit the sequestration of C in soils.

Among the SOC pools, the Ca is primarily from labile organic ma-
terials of plant residues and roots (Liu et al., 2017), which are easily
utilized by soil microbes and contribute greatly to SOC mineralization
(Jha et al., 2012). The relatively slow accumulation of Ca may be be-
cause the SOC mineralization rate increased significantly during the
restoration process (Fig. 3). By contrast, Cr and Cs are composed of
relatively stable C, which is more difficult to decompose by soil-
dwelling microorganisms, and have MRTs of> 10 years, reaching even
thousands of years (Wiesmeier et al., 2014; Zhang and Zhou, 2018).
Owing to their slow turnover rates, Cr and Cs tend to accumulate more
in soil as vegetation is restored (von Lützow et al., 2007). Another
possible explanation is that inter-conversions may occur among Ca, Cr,
and Cs. Vegetation changes following land use change not only influ-
ence the contents of active organic C and SOC by changing the inputs of
organic matter to soil but also induce the conversion between active
organic C and nonactive C in SOC by affecting the physical protection
provided by soil aggregates (An et al., 2010; Hyvönen et al., 2007;
Pandey et al., 2014). Thus, based on the present study, vegetation re-
storation led to increases in the contents of SOC and Ca, which further
induced the inter-conversions between Ca and Cs and Cr. In addition,
during vegetation restoration, an increase in plant litter inputs to soil
can generate positive priming effects (Crow et al., 2009; Schimel and
Weintraub, 2003), which may accelerate the movement of C inputs to
soil into stable fractions of SOC (Hyvönen et al., 2007).

Some consider the Cr portion to be an indicator of the biochemical
quality and stability of SOC (Rovira and Vallejo, 2007). Generally,
when the Cr portion is high, the biochemical quality of SOC is low, and
the SOC pool is more stable (Nath et al., 2018; Zhang et al., 2009). Liu
et al. (2017) reported that the contribution of Cr to SOC increased from
49.4 to 66.3% following agricultural land use change from pasture to
cropland. The Cr/SOC ratio in woodland (73.9%) was greater than that
in paddy (45.2%), orchard (59.1%), and upland sites (36.5%; Iqbal
et al., 2009). In the current study, the results are consistent with those
of the above studies and showed that the Cr/SOC ratio tended to in-
crease with vegetation restoration (Fig. 5). Therefore, the increase in
the ratio could be interpreted as support for the second hypothesis that
vegetation restoration would increase the stability of the SOC pool.
However, the highest Cr/SOC ratio was detected in the CF rather than in
the EF, which was most likely because the litter of the CF contained
more lignin and other recalcitrant compounds than broadleaf litter,
leading to high inputs of chemically recalcitrant material to the soil
(Crow et al., 2009).

In the four vegetation communities spanning the main stages of
restoration in this study, the contents of SOC and its pools primarily
accumulated in the top soil layer and decreased with an increase in soil
depth (Fig. 4). These results are consistent with those of Chabbi et al.
(2009), who found that the contents of SOC and its pools decreased
with soil depth. The authors suggested that the decrease with depth was
related to decreases in organic C inputs from litter and root material.
Plant litter, root exudates, and fine root turnover are the primary
sources of SOC (Zhao et al., 2015). The abundant inputs of plant litter
and fine roots to the topsoil, coupled with a lack of fresh plant residue
inputs in deeper soil layers (Li et al., 2017; Sun et al., 2014), should
lead to higher contents of SOC, Ca, Cs, and Cr and faster increases in
SOC and its pools in the topsoil horizon than their corresponding dy-
namics in deeper soil layers. Because plant litter and fine root inputs
decline with increasing soil depth, the soil microbial biomass is notably
reduced in subsoil compared with that found in topsoil. This explana-
tion is the most plausible for the declining contents and increasing rates
of SOC and its pools when going down the soil profile (Chabbi et al.,
2009). Furthermore, although the input of residues and materials from
plant photosynthesis to the soil at depth may be reduced, plants con-
sume more nutrients from the soil at increasing depths (Barreto et al.,

2011; Sun et al., 2014). This indirect effect of plant growth is most
likely an important factor that controls the contents and increases in
SOC, Ca, Cs, and Cr during the course of vegetation restoration.

4.2. Key factors affecting SOC and its Ca, Cs, and Cr pools

In the subtropical study area, the climate is similar among the four
vegetation communities examined. Therefore, vegetation restoration
facilitated the SOC accumulation and stabilization by altering vegeta-
tion factors (such as biomass input and litter properties) and soil factors
(such as soil physicochemical properties) (Deng et al., 2016; Li et al.,
2016a).

Because the ultimate source of SOC is CO2 fixed by plants (Russell
et al., 2004), the amount and chemical composition of fresh organic
materials derived from litter and roots directly contribute to the content
and composition of SOC (García-Díaz et al., 2018; Song et al., 2017).
Vegetation types and properties can influence the level and stability of
SOC via the input of vegetation biomass in plant litter and roots (Li
et al., 2016a; Li et al., 2017; Yu et al., 2017). Litter quality is a key
factor that controls nutrient release from litter and formation and ac-
cumulation of C in soil during the progress of vegetation restoration
(Liu et al., 2015; Wang et al., 2016). In this study, vegetation factors
explained 6–35% of the variation in content of SOC and its pools
(Fig. 6). As vegetation restoration advanced, the SI, LB, and FB in-
creased, and the quality of the litter layer improved significantly. The
EF had the highest SI, LB, FB, and litter quality, compared with the
other three vegetation community types (Tables 1 and 2, Fig. 2). The
contents of SOC and its pools were significantly correlated with vege-
tation factors, i.e., the SI, FB, LB, LN, and the LC/LN ratio (Table 4),
demonstrating that both plant biomass input and substrate quality are
most likely important regulators of C sequestration and stabilization in
soils.

The study also revealed that soil factors explained 4–15% of the
variation in content of SOC and its pools. This result provided evidence
for the close relationships between soil factors and SOC content and
stabilization. These relationships are close because the content of SOC is
determined by the supply of biologically available substrate, and soil
factors significantly affect a range of properties associated with the soil
microbial community and its ability to process C (Kemmitt et al., 2006).
The SOC pools are closely related to a wide range of soil chemical and
physical properties (Deng et al., 2016; Sá and Lal, 2009). Soil N and P
are essential for the biochemical stabilization of C in soils, which pro-
tects soil organic matter with humus from further decomposition
(Kirkby et al., 2011). A high content of clay particles in soil tends to
increase the storage of SOC by physically protecting SOC from de-
composition (Li et al., 2016a) and chemically protecting SOC by the
sorption and complexation of organic molecules (Ajami et al., 2016;
West and Six, 2007). In addition, soil clay particles facilitate organo-
mineral complexes, which stabilize SOC (Six et al., 2002). A decrease in
soil pH may result in increases in SOC contents in forests by affecting
the conditions for microbial growth (Chen et al., 2004). The findings of
the current study extend the previous general results and show that the
clay content increased as restoration proceeded through the four
community stages, but the soil pH value decreased (Table 3). Soil clay
content and pH were significantly associated with the content of SOC
and its pools. However, strong relationships between SOC, Ca, Cs, and Cr

and the soil C/N ratio under vegetation recovery were not revealed
(Table 4), illustrating that the total amount of nutrients in the soil ra-
ther than the soil quality was the primary factor regulating the contents
and distributions of SOC in the study region.

This study also found that vegetation and soil factors did not act
alone but rather their interactions drove the changes observed in con-
tents of SOC and its pools during vegetation restoration. Hence, to
better understand the distribution and dynamics of SOC pools, the in-
teractions between vegetation and soil require careful investigation.
Based on these results, SOC pool contents and stabilization mechanisms
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were apparently influenced by litter and soil physicochemical proper-
ties.

Although both vegetation and soil factors influenced the content of
SOC and its pools, their ability to explain the variation in Ca, Cs, and Cr

differed. The FB played the dominant role in influencing Ca, Cs, and Cr

during vegetation restoration. This dominant contribution by FB to C
dynamics under forest restoration may be explained by the role that
plant roots have generally in the input and output of SOC (Richter et al.,
1999; Zhu et al., 2017). Although both plant litter and roots are main
sources of C inputs to soil, the contribution of root biomass particularly
that of FB, is considered as paramount (Arthur and Fahey, 1992;
Robertson and Alongi, 2016). The organic matter input into soil via
roots can be more than twice that from plant litter (Arthur and Fahey,
1992). Compared with roots, plant litter has a limited influence on SOC
(Rasse et al., 2005). In addition, plant roots can modify soil properties
and affect the soil microenvironment, which can alter SOC decom-
position and stabilization (Rosell et al., 2000). Thus, the results of this
study reinforce that augmentation of FB can improve the contents of
SOC pools. Apart from FB, the C/N ratio of litter was an important
determinant of Ca and Cs during vegetation restoration. This result
implies that litter quality rather than litter biomass played a more im-
portant role in SOC accumulation. Soil clay was regarded as a sec-
ondary dominant indicator of Cr, supporting the findings of Liu et al.
(2015) and Qian et al. (2013) that clay content appears to be crucial for
the capacity of a soil to stabilize SOC. Therefore, this study provided
evidence that the content and stability of SOC pools were controlled by
different factors.

5. Conclusions

The vegetation restoration increased the contents of SOC and its
pools in four soil layers. In the EF, the contents of SOC, Ca, Cs, and Cr

were 3.89 to 8.07, 2.68 to 9.78, 3.37 to 5.78, and 4.48 to 17.8-fold
greater, respectively, than those of the scrub-grassland. The increase in
SOC during vegetation restoration was primarily stored as Cs and Cr,
which contribute to SOC accumulation and stabilization. The contents
of SOC and its pools in the four stages of restoration primarily accu-
mulated in the top soil layer and decreased in deeper soil layers. Litter
biomass, nitrogen and carbon content in litter, fine root biomass,
Shannon index, and soil clay content were all correlated with the
content of SOC and its pools. Notably, among these factors, fine root
biomass contributed the most to the variation in content of SOC and its
pools. However, the controlling factors differed for the different SOC
pools. The ratio of C to N in litter was an important controlling factor
for Ca and Cs, whereas soil clay content only played an important role
for Cr. Soil pH was only an important controlling factor for Cs. The
synergistic interaction between vegetation and soil factors was the
primary driver of the changes in contents of SOC and its pools during
vegetation restoration in this subtropical area of China. Thus, strong
measures taken to preserve natural forests and to facilitate the re-
storation of vegetation would be the main approach to increase long-
term soil C sequestration in this region.
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