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Abstract— The emerging near-surface light detection and rang-
ing (LiDAR) platforms [e.g., terrestrial, backpack, mobile, and
unmanned aerial vehicle (UAV)] have shown great potential
for forest inventory. However, different LiDAR platforms have
limitations either in data coverage or in capturing undercanopy
information. The fusion of multiplatform LiDAR data is a
potential solution to this problem. Because of the complexity and
irregularity of forests and the inaccurate positioning information
under forest canopies, current multiplatform data fusion still
involves substantial manual efforts. In this article, we proposed
an automatic multiplatform LiDAR data registration framework
based on the assumption that each forest has a unique tree dis-
tribution pattern. Five steps are included in the proposed frame-
work, i.e., individual tree segmentation, triangulated irregular
network (TIN) generation, TIN matching, coarse registration,
and fine registration. TIN matching, as the essential step to
find the corresponding tree pairs from multiplatform LiDAR
data, uses a voting strategy based on the similarity of triangles
composed of individual tree locations. The proposed framework
was validated by fusing backpack and UAV LiDAR data and
fusing multiscan terrestrial LiDAR data in coniferous forests. The
results showed that both registration experiments could reach
a satisfying data registration accuracy (horizontal root-mean-
square error (RMSE) <30 cm and vertical RMSE <20 cm).
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Moreover, the proposed framework was insensitive to individual
tree segmentation errors, when the individual tree segmen-
tation accuracy was higher than 80%. We believe that the
proposed framework has the potential to increase the efficiency
of accurately registering multiplatform LiDAR data in forest
environments.

Index Terms— Forest, multiplatform light detection and rang-
ing (LiDAR), registration, tree location.

I. INTRODUCTION

L IGHT detection and ranging (LiDAR) can be used to
accurately estimate forest structure attributes [e.g., tree

height, diameter at breast height (DBH), canopy cover, leaf
area index, and crown base height] from its rich 3-D infor-
mation [1]. It has been proven to be a highly useful remote
sensing technique in the practices of forest inventory [2]–[4]
and forest management [5]–[7]. Currently, airborne, unmanned
aerial vehicle (UAV)-borne, mobile, and terrestrial LiDAR
systems are the most commonly used LiDAR platforms in
forest-related applications [8]–[11]. However, each of these
LiDAR platforms has its own limitations. The down-looking
airborne and UAV-borne LiDAR systems can provide highly
accurate tree canopy information but lack tree trunk infor-
mation [12]; mobile LiDAR systems (e.g., backpack LiDAR)
can provide detailed tree trunk information, but the limited
vertical field of view and measurement range may result in
the missing of upper canopy information [13]; single-location
scans of terrestrial laser scanning (TLS) suffer from the
occlusion effect of branches and leaves, and the registration of
multiscan TLS data can be highly time-consuming [14], [15].
The fusion of multiplatform LiDAR data has the potential to
provide an ultimate solution to address the limitations of each
LiDAR platform.

Currently, there are three commonly used point cloud reg-
istration frameworks, including target-, feature-, and point-
based methods [16]–[18]. Target-based methods usually need
the assistance of exterior information to register LiDAR point
clouds, e.g., positioning information from a global positioning
system (GPS) [19], registration targets that can be easily
identified [20], [21], or color information provided by cam-
eras [22], [23]. Feature-based methods work similar to target-
based methods, which use tie points/lines/polygons to register
LiDAR point clouds, but these features are identified within

0196-2892 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-7931-339X


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

Fig. 1. Five-step process of the proposed multiplatform LiDAR registration framework. Red points represent the LiDAR data acquired from the side-view
backpack LiDAR, and green points represent the vertical UAV LiDAR data.

LiDAR point clouds (e.g., buildings, roofs, roads, and traffic
signs) [24]. Point-based methods directly match LiDAR point
clouds based on the geometric information provided by LiDAR
points, and the iterative closest point (ICP) algorithm is one of
the most widely used methods under this category [25], [26].
However, point cloud registration frameworks are typically
problematic in forested scenes. The exterior registration infor-
mation required by the target-based methods is either unavail-
able, inaccurate, or hard to acquire in forests. For example,
GPS positioning information might become unreliable under
forest canopies because of multipath errors and the atten-
uation of GPS signals [27]. Furthermore, arranging ground
targets or acquiring color imagery can be very time-consuming
and expensive [28]. Feature-based methods are widely used
in indoor and urban environments, where regular features
(e.g., parallel and orthogonal line segments [29], [30] and
conjugate least-squares surfaces [31], [32]) can be easily
found. Forest environments have much higher complex-
ity and irregularity than indoor and urban environments,
and similar regular features as in indoor and urban envi-
ronments can be hardly found or might be completely
absent. Point-based methods, such as ICP, usually require
the LiDAR point clouds to be coarsely registered before
running the algorithm. However, such coarse registration in
forest environments is usually achieved by manually selecting
tie points, which is a labor-intensive and time-consuming
process.

Recently, marker-free data fusion solutions have been pro-
posed to overcome the issues of missing referencing fea-
tures in forests. For example, Henning and Radtke [33] and
Liu et al. [34] proposed to use geometric features within the
LiDAR point clouds (e.g., stem centers and stem curves)
to register multiscan TLS data; Kelbe et al. [35] proposed a

multiscan TLS data registration method through the use of
populated triplet sets of DBHs, tree locations, and eigenval-
ues; Polewski et al. [36] used simulated annealing to find the
optimal 3-D transformation between the respective coordinate
systems of two tree location sets derived from backpack
and UAV LiDAR data. These methods either rely on tree
stem geometric information or look for a globally optimized
registration solution using constraints of tree attributes, such
as DBHs and tree locations. However, tree stem geometric
information is unavailable in top-view LiDAR data (e.g., UAV
LiDAR data), and globally optimized solutions might fail
when the estimation accuracies of tree attributes are low. How
to accurately and efficiently register multiplatform LiDAR
point clouds in forested scenes is still a big challenge in
LiDAR forest applications.

In this article, we propose a novel multiplatform LiDAR
data registration framework for forest applications based on
the unique spatial distribution of trees in a forest stand, with
tree pairs identified from multiplatform LiDAR data as the
only required features in the registration process. This article
is organized as follows. Section II introduces the methodol-
ogy of the proposed data registration framework, Section III
describes the experimental design and results for evaluating the
proposed framework, Section IV discusses the robustness and
limitations of the proposed framework, and Section V gives
the conclusion.

II. METHODOLOGY

The proposed framework includes five steps, i.e., individual
tree segmentation, triangulated irregular network (TIN) gener-
ation, TIN matching, coarse registration, and fine registration
(see Fig. 1). The detailed information of each step is presented
in Sections II-A–II-E.
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A. Individual Tree Segmentation

Extracting individual tree locations is the prerequisite of
the proposed point cloud registration framework. Individ-
ual tree segmentation is a point cloud processing step that
can automatically identify individual tree locations from
LiDAR point clouds. There have been numerous individ-
ual tree segmentation algorithms proposed in the literature,
which can be generally divided into two groups: canopy
height model (CHM) segmentation [37]–[39] and point cloud
segmentation (PCS) [40]–[42]. LiDAR data acquired from
different platforms and forest conditions usually require dif-
ferent segmentation schemes to obtain optimized segmentation
results. Jakubowski et al. [43] made a comprehensive com-
parison of the performance of CHM segmentation and PCS
under different forest conditions. The individual tree segmen-
tation method should be chosen based on the data acquisition
platform and forest conditions. The output individual tree
coordinates (i.e., X , Y, and Z) can be used as the input of
the proposed framework. The Z -coordinate of each tree is
represented by the elevation of the tree base. In this article,
we used the mean elevation of all ground points within a 1-m
buffer to represent the Z -coordinate so that the influence of
different tree position definitions from different platforms (e.g.,
treetop from UAV-borne LiDAR and tree base from terrestrial
LiDAR) can be minimized.

B. TIN Generation

This article assumes that every forest stand should have
a unique spatial distribution of trees and this spatial pattern
should not change in a short time period within which multiple
LiDAR data sets are acquired. In other words, the spatial
relationship between each tree and its neighboring trees should
be constant. To identify the spatial pattern of tree distributions,
the plane coordinates (i.e., X and Y ) of each individual
tree and its neighboring trees are transformed to a simple
geometric feature by constructing a TIN using the Delaunay
triangulation [44]. Based on the abovementioned assumptions,
a particular tree identified from different LiDAR platforms
should form a similar TIN with its defined neighbors. There-
fore, we should be able to find the corresponding tree pairs by
matching the TINs generated from different LiDAR platforms.

In the process of TIN generation, each tree location is
considered as a search point and its neighboring tree locations
can be found by the k-nearest neighbor search method. More-
over, in order to avoid ambiguous TINs, the search point does
not participate in the TIN generation. For example, as shown
in Fig. 2, the three search points have the same search neigh-
bors. In the case of TIN generation including the search point
itself, the generated TINs would be the same; if the search
point is excluded, the generated TINs would be distinctive
from each other. Two sets of TINs generated from segmented
trees in multiplatform LiDAR data are represented as TIN1 =
{TIN1

1, TIN1
2, . . . , TIN1

k and TIN2 = {TIN2
1, TIN2

2, . . . , TIN2
l ,

where k and l are the numbers of trees derived from two
LiDAR data sets, respectively.

C. TIN Matching

The plane coordinates (i.e., X and Y ) of the same trees
obtained by the individual tree segmentation from different

Fig. 2. Illustration of the TIN generation and ambiguous TIN elimination
for tree locations using a point cloud from one platform.

LiDAR data can be slightly different. For example, the indi-
vidual tree locations obtained from UAV-borne LiDAR data are
centers of tree crowns, whereas the individual tree locations
obtained from mobile and terrestrial LiDAR data are the
centers of tree bases. Meanwhile, the incomplete point cloud of
trees and the dense tree distribution can bring many undetected
and falsely detected trees in segmentation. These errors caused
by individual tree segmentation from different LiDAR data
may bring failures in the tree matching process if very strict
rules were used. Therefore, a tolerant matching method should
be used to match TINs. To avoid falsely matched TINs during
the tolerant-matching process, the matched TINs are further fil-
tered by using a random sample consensus (RANSAC)-based
method.

During the tolerant-matching process, a voting strategy is
used to count the number of similar triangles between two
TINs and find the best matched TIN pairs iteratively. Each
TIN in TIN1 is compared with all TINs in TIN2 to calculate
the matching scores based on the similarities among the
triangles within each TIN pair. The similarity of triangles is
evaluated by two parameters, the area similarity S and the
angle similarity I. Assuming that Trii,1p is the pth triangle in

TIN1
i , and Tri j,2

q is the qth triangle in TIN2
j , the area similarity

S can be calculated from the following equation:

S = 1−|lalb sin C − l ′al ′bsinC ′|
la lb sin C+l′al′bsinC ′

2

(1)

where la and lb are two sides of Trii,1p , l ′a and l ′b are two

sides of Tri j,2
q , and C and C ′ are the angles between la and

lb and between l ′a and l ′b, respectively. The triangle pair Trii,1p

and Tri j,2
q has three angle similarity components, i.e., IA , IB ,

and IC , where A, B, and C are the three angles of Trii,1p .
Zhou et al. [45] proposed the criteria of calculating angle
similarity based on the Gaussian distribution. Taking IC as
an example, the angle similarity IC between C and C ′ can be
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Fig. 3. Illustration of the voting process for TIN matching. Elements in green
represent marked elements and elements in red represent the largest element
excluding marked elements.

calculated as

IC = cos3
(π

2
(1−u(C))

)
(2)

u(C) = e− 1
2σ2 (C−C ′)2

(3)

where σ = C/6. The final angle similarity I is calculated as
the average of the three angle similarity components

I = (IA + IB + IC )/3. (4)

The overall similarity OS between the triangle pair Trii,1p

and Tri j,2
q is calculated as

OS = (I + S)/2 (5)

Note that if I or S was smaller than the user-defined thresholds
TI or TS , the OS value should be set to zero instead of being
calculated from (5) . By iterating the calculation between all
triangle combinations, an OS matrix (OSM) can be built as

OSM =

⎡
⎢⎢⎢⎣

OS11 OS12
OS21 OS22

· · · OS1n

· · · OS2n
...

...
OSm1 OSm2

...
...

. . . OSmn

⎤
⎥⎥⎥⎦ (6)

where m and n are the number of triangles in TIN1
i and TIN2

j ,
respectively.

The voting process for the TIN pair of TIN1
i and TIN2

j is
shown in Fig. 3. Within OSM, the largest OS is first identified
and marked, and all the elements on the corresponding row and
column of the matrix are set to zero. Then, the new largest OS,
excluding the previous largest OS, is identified and marked,
and all the elements on the corresponding row and column
of the matrix are set to zero. This process is repeated until
all unmarked elements become zero. Each of the remaining
marked elements is treated as an equal-weighted vote with a
value of one, and the final vote score (VS) between TIN1

i and
TIN2

j is calculated as the sum of all votes.
After calculating the VS between TIN1

i and all TINs in
TIN2, the TIN(s) with the largest VS is/are picked out. If the
largest VS value is smaller than the user-defined voting score
threshold TVS, the search point in data set 1 is treated as no
matched tree location point can be found in data set 2. If the
largest VS value is larger than user-defined threshold TVS and

there is only one matched point in data set 2, the search point
in data set 1 and the matched tree location point in data set 2
are treated as a pair of trees. If the largest VS value is larger
than user-defined threshold TVS and there are more than one
matched points in data set 2, the thresholds TI and TS are
iteratively increased to eliminate the one-to-many phenomenon
using the following equations:

T ′
I = (1 − f )TI × 1.1N (7)

T ′
s = (1 − f )Ts × 1.1N (8)

f = plmax − 50

50
× 10% (9)

where N is the number of iterations that should be smaller than
the user-defined maximum number of iterations TN , and plmax

is the percentile of the maximum side in a triangle among
all sides of triangles of the whole study area. Since plmax

is between 0 and 100, the scale factor f should be in the
range of [−0.1, 0.1]. The scale factor f here is used to give
looser thresholds in areas with sparse trees and give stricter
thresholds in areas with dense trees because the individual tree
segmentation error is higher in areas with dense trees.

The whole TIN matching process can be described as the
following pseudo codes.
For i = 1 to k

Generate T I N 1
i from the neighbors of the search tree

point i
For j = 1 to l

Generate T I N 2
j from the neighbors of the search

tree point j
For p = 1 to m

For q = 1 to n
Calculate S and I between T ri i,1

p and T ri j,2
q

If S ≥ TS and I ≥ TI

OSM(p, q) = (S + I )/2
Else

OSM(p, q) = 0
End for

End for
Do when all unmarked elements in OSM are not 0

Find and mark the largest unmarked OSM
(row, col)
Set unmarked OSM(row,:) and OSM(:, col) as 0

End do
VS(i , j) = the number of marked elements in OSM

End for
If max(VS(i,:)) < TV S

There is no matched tree location point for i
Else if max(VS(i ,:)) ≥ TV S and count(max(VS(i , :)))
== 1

The matched tree point in T I N 2 for tree location
point i is found

Else if max(VS(i , :)) ≥ TV S and count(max(VS(i , :)))
> 1

Updating the thresholds TI and TS and iterate the
TIN matching process until count (max(VS(i , :)))
== 1 or the number of iterations > TN

End For



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GUAN et al.: NOVEL FRAMEWORK TO AUTOMATICALLY FUSE MULTIPLATFORM LiDAR DATA 5

From the abovementioned process, a set of tree location
pairs can be collected from two LiDAR data sets from different
platforms. The number of matched tree pairs is usually much
higher than the required number of tree pairs for performing
coarse registration. To ensure the coarse registration quality,
the matched tree pairs are filtered and optimized by the
RANSAC algorithm [46], [47] using the OpenCV implemen-
tations with default parameters.

D. Coarse Registration

The matched tree pairs are acquired through the TIN
matching of plane coordinates (i.e., X and Y ), while the 3-D
coordinates (i.e., X , Y , and Z) of matched tree pairs from
multiplatform LiDAR data are used to calculate the rotation
matrix and translation vector to transform the target point
cloud to the source point cloud. Considering the fact that the
distance measurements from different LiDAR platforms are
all highly accurate [48], it is reasonable to set the scale factor
of the rotation matrix as 1. Therefore, the coarse registration
process can be expressed as⎡

⎣ X
Y
Z

⎤
⎦ = R

⎡
⎣ X ′

Y ′
Z ′

⎤
⎦ + T (10)

where X , Y , and Z are the coordinates of the source point
cloud, X ′, Y ′, and Z ′ are the coordinates of the target point
cloud, and R and T are the rotation matrix and translation
vector, respectively.

E. Fine Registration

In the fine registration step, the ICP algorithm, a point-
based matching method based on minimizing the cumulative
distance between two point clouds [49], is used to further
improve the multiplatform LiDAR data registration accuracy.
To reduce the chance of mismatching errors in ICP results,
the ICP algorithm should be performed on the overlapped
areas of different LiDAR data sets with distinct characteristics.
For example, if two multiplatform LiDAR data sets share a
large portion of ground points and the ground is a rugged
terrain, their ground points can be selected to run the ICP
algorithm; if two multiplatform LiDAR data sets share a large
portion of tree trunks, their point clouds within the height
range of tree trunks can be selected to run the ICP algorithm.

III. EXPERIMENTAL ANALYSIS

A. Study Area and Data Collection

The study area is located in the Mulan Paddock, Hebei,
China (42.12◦ N, 117.35◦ E). It is a planted forest and the
dominant tree species are Pinus sylvestris var. mongolica
Litv. and Pinus tabuliformis Carrière. Three study sites were
selected within the study area. Site 1 has an area of 7890 m2

with an 8-m elevation variation, site 2 has an area of 5814 m2

with a 46-m elevation variation, and site 3 has an area
of 1885 m2 with a 3-m elevation variation. The average
canopy cover is 71%, 46%, and 65% in sites 1, 2, and 3,
the average tree height is 18, 17, and 20 m, and the average
tree density is 283, 275, and 1056 trees/ha. Three widely

TABLE I

SPECIFICATIONS OF THE THREE LiDAR
PLATFORMS USED IN THIS ARTICLE

used LiDAR platforms, including a backpack LiDAR platform,
a UAV-borne LiDAR platform, and a TLS platform, were used
to collect multiplatform LiDAR data within the three study
sites in August 2018. Their hardware models and specifications
are listed in Table I. The UAV LiDAR system (Green Valley
International LiAir 200) integrates a HESAI Pandar40 laser
scanner and a high-precision inertial navigation system, whose
relative positioning accuracy is specified as ±5 cm. The
backpack LiDAR system (Green Valley International LiBack-
pack 50) is equipped with a Velodyne Puck VLP-16 laser
scanner, and its relative positioning accuracy is specified as
±5 cm. The Riegl VZ-400i is a high-precision TLS scanner,
and its measurement accuracy is ±0.5 cm. Sites 1 and 2
were covered by both UAV and backpack LiDAR data. The
UAV LiDAR data in sites 1 and 2 were collected from a
single flight line and two flight lines, respectively. The flight
altitude was about 150 m above ground at both study sites,
and the overlap ratio between the flight lines in site 2 was
about 50%. The point density of the collected UAV LiDAR
data is about 158 pts/m2 in site 1 and 238 pts/m2 in site 2 [see
Fig. 4(b) and (c)]. The backpack LiDAR data at study sites 1
and 2 were all collected following a “S”-shape trajectory with
a ∼10-m horizontal spacing. The collected backpack LiDAR
data had an average point density of 2,042 pts/m2 in site 1
and 2092 pts/m2 in site 2 [see Fig. 4(b) and (c)]. It should
be noted that the extent of UAV LiDAR data was slightly
larger than that of backpack LiDAR data to ensure that they
fully covered the backpack data. Site 3 was only covered
by the TLS data. The Riegl VZ-400i scanner was used to
cover the study area using four separate scans. The distance
between scan position 1 and scan positions 2–4 was about
13, 15, and 20 m, while the overlap ratio was about 51%,
40%, and 33%, respectively. Six high-reflectance targets were
installed in site 3, and they were used to manually register the
TLS scans using the Riegl RiSCAN Pro software. In order
to reduce the errors of individual tree segmentation caused
by incomplete scan of trees, we used a rectangle with a size
of 25 m × 25 m to clip the original TLS data of each scan.
The average point density of each TLS scan was about 22
167 pts/m2 [see Fig. 4(b) and (c)].
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Fig. 4. (a) Location of the study area. (b) Collected UAV (Left) and
backpack (Right) LiDAR data in study site 1, and their corresponding
individual tree segmentation results (black dots). (c) Collected UAV (Left)
and backpack (Right) LiDAR data in study site 2, and their corresponding
individual tree segmentation results (black dots). (d) Collected four TLS scans
in study site 3, and their corresponding individual tree segmentation results
(black dots).

In study sites 1 and 2, we put a 60 cm × 90 cm referencing
standard white board in an open area so that it could be seen
by both the backpack LiDAR and UAV LiDAR [see Fig. 5(a)].
The referencing white board was used to evaluate the relative
positioning accuracy of the collected backpack and UAV
LiDAR data [see Fig. 5(b) and (c)]. By fitting a plane from
the points falling on the referencing white board, the dis-
tance between each point and the fit plane was calculated.
The relative positioning accuracy was calculated as the root-
mean-square error (RMSE) of these points to the fit plane.
As can be seen in Fig. 6, the backpack and UAV LiDAR

Fig. 5. Example of (a) setup of the referencing standard white board, and its
corresponding point clouds obtained from (b) backpack LiDAR and (c) UAV
LiDAR systems.

Fig. 6. Relative positioning accuracy of the collected backpack LiDAR data
and UAV LiDAR data at the two study sites.

data at both sites had a relative positioning error lower than
10 cm, which agreed with the nominal specifications from the
manufacturer. The referencing white board was also used to
evaluate the multiplatform LiDAR data registration accuracy
in the following experiment.

B. Experiment Design

1) Data Processing: It is inevitable to have noise in the
collected LiDAR data due to factors such as tree movement
with winds and flying birds. In this article, we used the
outlier removal tool integrated in the GreenValley International
LiDAR360 software (https://greenvalleyintl.com/software) to
remove noise points in all collected LiDAR data. All LiDAR
data were filtered to classify ground points using the improved
progressive TIN densification filtering algorithm proposed by
Zhao et al. [50], which has shown to be robust under different
forest and terrain conditions. Finally, the obtained ground
points were used to normalize the original LiDAR point clouds
to produce the input data for individual tree segmentation by
using the LiDAR360 software.

2) Individual Tree Segmentation: Different segmentation
strategies were used to segment the UAV LiDAR data and the
backpack and terrestrial LiDAR data. For the UAV LiDAR
data, the top–down PCS algorithm proposed by Li et al. [40]
was used to identify individual tree locations; for the backpack
and terrestrial LiDAR data, the bottom–up PCS algorithm
proposed by Tao et al. [42] was used. These algorithms use
a similar principle in the segmentation process, which first
identifies seed points of individual trees and then labels other
points by finding the shortest path to seed points using the
comparative shortest path algorithm. The difference is that
the top–down PCS algorithm finds seed points by recognizing
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TABLE II

LIST OF PARAMETERS IN THE PROPOSED MULTIPLATFORM LiDAR DATA
REGISTRATION FRAMEWORK AND THEIR CORRESPONDING VALUES

USED IN THIS ARTICLE

treetops, but the bottom–up PCS algorithm finds seed points
by recognizing tree bases. The PCS methods were selected in
this article because studies have shown that they outperformed
CHM methods in coniferous forests and were less influenced
by undercanopy low-vegetation points [43].

To evaluate the individual tree segmentation results,
we visually counted the number of trees and marked their cor-
responding locations from the backpack or terrestrial LiDAR
data. Three accuracy statistics, i.e., recall (r), precision (p),
and F-score (F), were calculated by comparing with individual
tree locations derived visually

r = TP

TP + FN
(11)

p = TP

TP + FP
(12)

F = 2×r × p

r + p
(13)

where true positive (TP) denotes the number of trees correctly
detected, false negative (FN) denotes the number of trees that
were not detected, and false positive (FP) denotes the number
of trees falsely detected. r indicates the tree segmentation
completeness, p indicates the correctness of the detected trees,
and F is the overall accuracy taking both commission and
omission errors into consideration. Note that the individual
tree segmentation accuracies of the UAV and TLS LiDAR
data were calculated from the corresponding postregistered
data sets so that they could be compared with individual tree
locations derived visually.

3) Multiplatform LiDAR Data Registration: Two experi-
ments were conducted to evaluate the performance of the
proposed multiplatform LiDAR data registration framework,
i.e., the registration between backpack LiDAR data and UAV
LiDAR data and the registration among multiscan TLS data.
Overall, there are five parameters in the proposed registration
framework (see Table II). Among these parameters, TI and Ts
are two iteratively increasing thresholds, which can be set to
relatively small values as initial values, and TN can be set to
a relatively large value based on experience. The remaining
two parameters number of neighbors (NN) and TVS can be
estimated using a trial and error method. A detailed discussion
of the parameter setting will be described in Section IV. The
two experiments used the same set of parameter values without
any changes. The only difference in the registration procedures
of the two experiments was that the registration of backpack
and UAV LiDAR data used ground points to perform the fine

TABLE III

ACCURACY ASSESSMENT FOR THE INDIVIDUAL TREE SEGMENTATION
RESULTS FROM THE BACKPACK AND UAV LiDAR DATA AT

THE TWO STUDY SITES

registration, whereas the registration of multiscan terrestrial
LiDAR data used all points. Moreover, for the registration of
TLS data, we used the data from scan position 1 as the target
data and the TLS data from scan positions 2–4 as the source
data to be aligned with the reference coordinate system.

4) Accuracy Assessment: The registration accuracy of back-
pack and UAV LiDAR data was evaluated using the refer-
encing white board. The backpack LiDAR points falling on
the referencing white board were first used to fit a plane
Z = f (X, Y ). Then, the horizontal and vertical distances
of each transformed UAV LiDAR point falling on the ref-
erencing white board to the fit plane were calculated, and
the horizontal error EH and vertical error EV were calculated
as

EH =
√∑n

i=1

(
X ′

i Y
′
i → Z = f (X, Y )

)2

n
(14)

EV =
√∑n

i=1

(
Z ′

i → Z = f (X, Y )
)2

n
(15)

where n is the number of UAV points falling on the referencing
white board, and X ′

i Y
′
i → Z = f (X, Y ) and Z ′

i → Z =
f (X, Y ) represent the horizontal and vertical distances from
a point to the fit plane.

Since the installed referencing white board was not within
the scanning area of TLS scans, the abovementioned accuracy
assessment methods could not be used for the evaluation
of multiscan TLS data registration. Considering the high
positioning accuracy of TLS data and the high overlap rate
between TLS scans, the registration accuracy of multiscan TLS
data was represented by the residual after running ICP. The
obtained ICP residual value was compared with the manual
registration residual obtained using the Riegl RiSCAN Pro
software.

C. Backpack LiDAR and UAV LiDAR Registration Results

The individual tree segmentation results from the backpack
and UAV LiDAR data in the two study sites were shown
in Fig. 4(b)–(e). Overall, the backpack LiDAR data allowed a
very high individual tree segmentation accuracy. The F-values
of the two study sites were all higher than 0.95 (see Table III).
The individual tree segmentation accuracy from UAV LiDAR
data was relatively lower compared to that from backpack
LiDAR data (see Table III). The individual tree segmentation
accuracy in site 2 was slightly higher than that of site 1, which
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Fig. 7. (a) Schematic of tree location displacement obtained from backpack
and UAV LiDAR data sets. (b) Average tree location displacements in sites 1
and 2. Red dots in (a) represent tree locations derived from backpack LiDAR
data, and green dots represent tree locations derived from UAV LiDAR data. d
and d’ represent the distance between two neighboring trees. The displacement
in (b) was calculated as the horizontal distance difference of a pair of trees
before the registration.

Fig. 8. Profiles of the registered backpack LiDAR data (red dots) and UAV
LiDAR data (green points) in (a) site 1 and (b) site 2.

might be caused by the fact that the canopy coverage in site 2
was much lower than that in site 1. Here, the displacement of
tree locations was quantified by the difference in the distances
between a pair of neighboring trees from different LiDAR
data sets (see Fig. 7). On average, there was an around
30- and 40-cm displacement in sites 1 and 2, respectively
[see Fig. 7(b)].

The TIN matching process identified seven pairs of trees
from site 1 and 11 pairs of trees from site 2, which were used
to perform the coarse registration. The standard deviations of
residuals between tree locations after coarse registration were
0.84 and 0.93 m for sites 1 and 2, respectively. The two LiDAR
data sets were closely aligned with each other following
fine registration that the fused backpack UAV LiDAR point
clouds in tandem provided more complete forest structural
information than either platform alone (see Fig. 8), and the
horizontal error and vertical error after the fine registration
step were 0.300 and 0.146 m, respectively, for site 1, and
were 0.211 and 0.187 m, respectively, for site 2.

D. Multiscan TLS Data Registration Results

The individual tree segmentation accuracy of the nonreg-
istered TLS data was more than 95% for all four scans
(see Table IV). After TIN matching, there were 11, 10, and 8
trees reserved to calculate the rotation matrix and translation
vector for the coarse registration between the TLS data from
scan position 1 and those from scan positions 2–4, respectively.
The standard deviation of residuals between tree locations

TABLE IV

ACCURACY ASSESSMENT FOR THE INDIVIDUAL TREE SEGMENTATION
RESULTS FROM THE MULTISCAN TLS DATA

Fig. 9. (a) Final registration results of the four TLS scans on site 3 using the
proposed framework. (b) Profile example of the registered TLS point cloud and
enlarged examples of two tree segments in the profile. The black rectangle
in (a) represents the extent of the profile and the “+” marks represent the
scanning positions.

after coarse registration between the TLS data from scan
position 1 and those from scan positions 2–4 was 0.161,
0.154, and 0.157 m. The four TLS scans matched with each
other very well after the fine registration (see Fig. 9), and
the standard deviation of residuals was 0.038, 0.050, and
0.053 m, compared with a value of 0.013, 0.009, and 0.011 m
obtained by manual registration using Riegl RiSCAN Pro
software.

IV. DISCUSSION

Multiplatform LiDAR data registration is increasingly in
demand in LiDAR forest applications. Through the fusion of
multiplatform LiDAR data, it can overcome the limitations
of single-platform/single-scan LiDAR data and allow for the
more complete derivation of forest structure parameters [51].
However, due to the complexity and irregularity of forests
and the often absent or inaccurate GPS positioning informa-
tion, traditional point cloud registration methods can hardly
be used in forest environments [52]. Recently, there have
been successful attempts to develop marker-free registration
methods to increase the efficiency of multiplatform LiDAR
data registration. Generally, these methods can be divided
into two categories, i.e., looking for geometric features for
registration inside the multiplatform LiDAR data (e.g., stem
centers and stem curves) and looking for a globally opti-
mized transformation solution based on LiDAR-derived tree
attributes (e.g., tree height and DBH) [33]–[36]. The methods
using geometric features inside the point clouds have a similar
idea as the proposed framework, which is using the unique tree
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characteristics as the referencing features [33], [34]. However,
compared with the proposed framework, these methods have
disadvantages of less adaptability to different platforms. Cur-
rently, methods based on tree stem geometric features cannot
be used in registrations involving top-view LiDAR data (e.g.,
UAV LiDAR data), because top-view LiDAR data cannot
capture complete tree stem information. As to the methods
using globally optimized transformation solution, they might
not be achievable when the required tree attributes were
inaccurate or missing. For example, the method proposed by
Kelbe et al. [35] required accurate tree stem maps and DBH
estimations, which can be hard to obtain from UAV LiDAR
data [53], and the method proposed by Polewski et al. [36]
required a precondition that the Z -axis of multiplatform
LiDAR data should be well aligned or could be aligned by
tree stem orientations, which can be hard to satisfy in complex
forest environments due to the inaccurate GPS information
under the forest canopy and the lack of trunk information
in down-looking LiDAR platforms. The proposed registration
framework only required tree locations to fuse multiplatform
LiDAR data and does not require any exterior information to
assist the registration process, which can largely improve the
multiplatform LiDAR data registration applicability.

Overall, the proposed framework worked well in both
experiments in this article. The fusion of backpack and UAV
LiDAR data sets achieved vertical accuracy better than 20 cm
and horizontal accuracy better than 30 cm on sites 1 and 2.
Considering the positioning uncertainty within the backpack
and UAV LiDAR data and the error propagation effect during
the registration, the registration results should satisfy many
forest-related applications. The horizontal displacement after
registration for site 1 was much larger than that for site 2
(see Fig. 8). The possible reason might be that the terrain
in site 1 was much flatter than site 2. Since the differences
in Z -values in flat terrain were not obvious, the process of
the ICP algorithm might lack features in the Z -direction.
In this case, the ICP algorithm may converge to a local
optimum [54], [55], which therefore leads to larger horizontal
errors. The accuracy of the registration of multiscan TLS data
was much higher than that for the registration of backpack
and UAV LiDAR data. This indicates that the performance of
the proposed framework might be improved by increasing the
precision of LiDAR data. Although the registration accuracy of
multiscan TLS data registration is still lower than that of using
a manual registration method based on referencing targets,
it can be used as a preliminary step before performing man-
ual registration to increase the efficiency. Future studies can
consider using the referencing targets as exterior information
to further improve the registration accuracy.

Individual tree segmentation is the prerequisite for the pro-
posed registration framework, and the accuracy of individual
tree segmentation might have a considerable influence on the
registration accuracy. In this article, the side-view backpack
LiDAR data can obtain rich tree trunk information, and the
corresponding individual tree segmentation accuracy is much
higher than UAV LiDAR data (see Table III). Therefore, this
article matched UAV LiDAR data to backpack LiDAR data to
reduce the influence of incorrectly segmented trees. To further

Fig. 10. Influence of individual tree segmentation accuracy on the TIN
matching results. r and p represent the recall and precision, respectively,
and each element in the matrix represents the number of matched tree pairs.
Elements colored in red indicate that there are enough matched tree pairs
for registration, and elements colored in green indicate that the number of
matched tree pairs is insufficient for registration.

evaluate the influence of individual tree segmentation accuracy
on the registration accuracy, we simulated a scenario where the
individual tree segmentation accuracy was 100% and randomly
removed/added errors from/to the UAV LiDAR segmentation
results in site 1 to manipulate the values of r and p from UAV
individual tree segmentation results, which were changed from
100% to 75% with a step of 5%. As can be seen in Fig. 10,
with the decrease of r and p, the number of matched tree pairs
also decreased. However, when r and p were both higher than
80%, there were enough matched tree pairs to perform the
following coarse and fine registration steps. Currently, most
individual tree segmentation practices from LiDAR can reach
an overall accuracy higher than 85% [56], [57]. Therefore,
we believe that the proposed framework can be used to
register multiplatform LiDAR data effectively in most forest
environments.

There are five user-defined parameters in the algorithm,
as listed in Table II. TS and TI are two iteratively updated
parameters, which can be assigned with relatively small values
(around 0.75) to ensure that the TIN matching process can
find enough tree pairs. TVS is a VS threshold, which can be
determined by a simple trial-and-error process. The number of
matched tree pairs should be monitored in the trial-and-error
process. The larger the TVS, the fewer the number of matched
tree pairs. Since solving the rotation matrix and translation
vector only requires three paired targets [58], [59], the registra-
tion process can be conducted once the trial-and-error process
finds three matched tree pairs. However, the robustness of the
transformation solution can be improved by introducing more
referencing targets [58]–[60]. Therefore, we encourage users
to continue the trial-and-error process with as many matched
tree pairs (greater than eight pairs) as possible. TN determines
the number of iterations, which can be set to a relatively
large number to eliminate the “one-to-many” phenomenon in
the TIN matching process. In summary, the abovementioned
four parameters can either be determined by a simple trial-
and-error process or do not have a significant influence on
the registration framework. The only parameter that cannot
be easily obtained and might have a significant influence
on the registration accuracy is NN. To assess the sensitivity
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Fig. 11. Influence of the NN on the TIN matching results on site 1.

of the proposed framework to NN, we iteratively increased
NN and ran the registration processes for site 1 repeatedly.
To eliminate the influence of individual tree segmentation error
on the results, the registration processes were running under
a simulated scenario where the individual tree segmentation
accuracy was 100%. All other parameters were set the same as
in Table II. Since TVS was set to five and at least seven points
were needed to build a TIN with five triangles, the number
of matched tree pairs would be zero if NN ≤ 7. Therefore,
NN was increased from 8 to 15 with a step size of one in this
analysis. As can be seen in Fig. 11, with the increase of NN,
the number of matched tree pairs first increased and then
decreased, and the largest value appeared when NN was 11.
The difference in the number of matched tree pairs was less
than 10 when NN was set between 10 and 12. Considering the
redundant information provided by a large number of matched
tree pairs for registration, it should be a safe choice to set NN
as around twice the value of TVS.

Although the proposed framework shows great potential
in solving the bottleneck of multiplatform LiDAR data reg-
istration in forest environments, it still has limitations that
need to be addressed in future studies. First, the proposed
framework might not work well in regularly planted forests,
because the regular arrangement of stems will likely result in
very similar TINs built from different tree locations. Using
exterior information to assist the proposed framework (such
as referencing targets) might be a solution to this issue.
Moreover, this article only tested the proposed framework
in very limited forest environments. Further studies are still
needed to investigate how the framework performs in other
more complex forest environments, such as deciduous forests.
In dense deciduous forests, the tightly interlocked canopies
might cause low accuracy of individual tree segmentation from
UAV LiDAR data. Using areas around forest gaps with sparse
tree distribution instead of the whole study area might be
beneficial to increase the registration accuracy.

V. CONCLUSION

This article proposes an automatic point cloud registration
framework for multiplatform LiDAR data fusion in forest envi-
ronments. Based on the assumption that each forest stand has
a unique spatial distribution of trees, the proposed framework
identifies tree pairs from multiplatform LiDAR data by a TIN
matching strategy. The identified tree pairs are then used to
coarsely match the target point cloud to the source point cloud,

and the final registration result could be obtained by running an
ICP-based fine registration process. The proposed framework
was tested to register backpack LiDAR data and UAV LiDAR
data and register multiscan TLS data. Overall, the proposed
framework achieved satisfying accuracies in both experiments.
The vertical error of the registration between the backpack and
UAV LiDAR data was less than 20 cm for both study sites, and
the horizontal error was less than 30 cm. The registration error
was much lower for the fusion of multiscan TLS data. The
average registration error was about 4.7 cm. Individual tree
segmentation errors can reduce the number of matched tree
points. However, as long as the number of matched tree points
was enough for solving the rotation matrix and translation
vector, the increase of tree segmentation errors (<20%) did
not have a significant influence on the registration accuracy.
Moreover, the proposed framework was not overly sensitive
to the settings of user-defined parameters. All parameters can
be easily calculated or obtained by a simple trial-and-error
process.
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