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Abstract

Aims
Quantifying the relative importance of the mechanisms that drive 
community assembly in forests is a crucial issue in community ecol-
ogy. The present study aims to understand the ways in which niche-
based and spatially based processes influence community assembly 
in areas in different climatic conditions and how these processes 
change during the transition from seedling to adult.

Methods
In this study, we investigated how taxonomic and phylogenetic beta 
diversity in seedling and adult stages of forest trees change across 
three elevational transects in tropical, subtropical and subalpine for-
ests in Southwest China, and the relationships of these changes to 
the environment and inter-site distances. We quantified the relative 
contribution of environmental conditions and spatial distribution 
to taxonomic and phylogenetic beta diversity of both seedling and 
adult life stages along each elevational transect. We also quantified 
the taxonomic and phylogenetic similarity between seedlings and 
adult trees along elevations.

Important Findings
Taxonomic and phylogenetic beta diversity of both seedlings and adult 
trees increased with an increase in both environmental distance and 
spatial distance in all three transects. On both taxonomic and phylo-
genetic levels, the effects of environmental filtering and spatial dispos-
ition varied between life stages and among forest types. Phylogenetic 
similarity between seedlings and adult trees increased with elevation, 
although the taxonomic similarity did not show clear elevational pat-
terns. Our results suggest that the relative contribution of niche-based 
and space-based processes to taxonomic and phylogenetic assem-
blages varies across major plant life stages and among forest types. 
Our findings also highlight the importance of ontogenetic stages for 
fully understanding community assembly of long-lived tree species.
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INTRODUCTION
Identifying the mechanisms driving community assembly is a 
central objective of community ecology (Hubbell 2001; Leibold 

2008; Myers et  al. 2013; Tilman 2004). Theories emphasiz-
ing niche-based processes, which incorporate environmen-
tal filtering, suggest that community composition across 
ecological gradients should show strong correlations with 
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environmental changes (Chesson 2000; Leibold et al. 2004). 
Conversely, theories emphasizing spatial processes highlight 
innate dispersal limitation in community assembly processes 
(Bell 2005; Hu et al. 2012b). Measures of beta diversity quan-
tify turnover along environmental and spatial gradients and 
have the potential to estimate the relative importance of these 
two ecological processes in community assembly (Anderson 
et al. 2011; Kraft et al. 2011).

Several studies have combined niche-based and space-
based explanations into an integrative approach which has 
clearly demonstrated the importance of both kinds of processes 
in shaping community dynamics (Girdler and Barrie 2008; 
Tuomisto et al. 2003). At large biogeographic scales (e.g. con-
tinental or global), both broader spatial distances and increased 
habitat heterogeneity limit the distribution of species (Wiens 
2011). In Western Amazonia, differences in composition of tree 
species among plots can be better explained by environmen-
tal variation than by dispersal limitation (Tuomisto et al. 2003). 
However, the distribution of species in the Panama Canal 
watershed has been primarily affected by dispersal limitation 
and then shaped by environmental heterogeneity (Chust et al. 
2006). Moreover, the relative contributions of both niche-based 
and spatial processes change with spatial scale. For example, in 
tropical tree community assemblages, stronger environmental 
filtering occurs at broader spatial scales (Yang et al. 2014).

The response of forest communities to environmental fil-
tering and spatial arrangement varies with ontogeny (devel-
opment from seedling to adult), especially when we compare 
the seedling stage to adult tree life stages (Lasky et al. 2015; 
Perez-Ramos and Maranon 2012). The different relative 
importance of environmental filtering on tree assemblages 
may reflect changes in the environmental requirements of 
each life stage (Bertrand et al. 2011; Jin et al. 2015). So, dis-
persal limitation may be strongest at the earlier life stages of 
trees, resulting from limitations in long-distance dispersal of 
seeds. Hu et al. (2012a) showed that in a seasonal tropical for-
est in China, environmental variables (topography and soil 
characters) played an increasingly important role as tree size 
increased. In contrast, spatial processes had greater influence 
among small trees, and this decreased with increasing tree 
size. In Neotropical lowland forest, spatially dependent pro-
cesses (i.e. dispersal limitation) had a greater effect on species 
assemblages of young trees (Arieira et  al. 2016). For com-
munity assembly in a subtropical forest, the importance of 
environmental filtering increased, and that of dispersal limi-
tation decreased, with tree life stages (Yang et al. 2016). Most 
studies, however, have sampled only young trees or juvenile 
stages, with little attention given to the understory tree seed-
lings (diameter at breast height [DBH] < 1 cm), even though 
tree seedlings play a key role in forest regeneration (Bace 
et al. 2012). Moreover, we lack knowledge of how ontogen-
etic shifts in environmental and spatial contributions to tree 
assembly vary across contrasting climatic regimes.

Most previous studies have focused on taxonomic beta 
diversity by investigating taxonomic turnover or assemblage 

dissimilarity (Anderson et  al. 2011; Kraft et  al. 2011; Myers 
et al. 2015). By using a species-centered point of view, spe-
cies are treated independently, which conveys little infor-
mation regarding the ecological similarity or evolutionary 
history of the species (Chave et  al. 2007; Swenson 2011). 
Given the potential limitations of taxonomic beta diversity 
measures, phylogenetic beta diversity measures provide more 
refined information regarding the ecological and evolution-
ary relationships among the species within the assemblages 
being compared. For example, tropical forests with high taxo-
nomic beta diversity but low phylogenetic beta diversity may 
indicate the presence of many closely related species (Qian 
et  al. 2013). Moreover, changes in phylogenetic structure 
with increased tree size may indicate the variation of assem-
bly mechanisms across life stages (Swenson et al. 2007). The 
inclusion of phylogenetic beta diversity in community struc-
ture investigations is essential to fully understand the evo-
lutionary processes driving the organization of communities 
(Fortunel et al. 2014; Graham and Fine 2008; Swenson 2011).

Elevational transects offer ideal systems for exploring the 
ways in which ecological processes respond to changing envi-
ronments. With increases in elevation, different suites of envir-
onmental conditions exist within short spatial distances of each 
other; an upward shift of 100 m is approximately equivalent to 
a pole-ward shift of 100 km with respect to temperature change 
(Jump et al. 2009; Tello et al. 2015). Accordingly, steeper envir-
onmental gradients may be more suitable for detecting envir-
onmentally driven patterns in species composition. They may 
also mitigate larger-scale spatial changes in spatial distribution 
as species’ displacements or, indeed, whole communities shift 
in search of suitable habitat (Qian et al. 2014). In addition, ele-
vational gradients avoid many underlying issues associated 
with latitudinal co-varying environmental conditions (Körner 
2007). Elevational gradients, therefore, are ideal for investigat-
ing the roles of ecological and evolutionary processes in struc-
turing species assemblages in local communities.

Here, we investigate the ontogenetic changes in taxonomic 
and phylogenetic beta diversity of seedlings and adult tree spe-
cies in tropical, subtropical and subalpine forests across eleva-
tional gradients in Southwest China. The goal of this study is to 
quantify the relative contribution of environmental variables 
and spatial drivers to the taxonomic and phylogenetic beta 
diversity of the two selected age classes along three elevational 
transects. We hypothesized that the relative contribution of 
environmental filtering and spatial drivers decrease from trop-
ical to subalpine environment in structuring taxonomic and 
phylogenetic beta diversity. We also expected that the influ-
ence of these processes increase from seedling to adult stages.

MATERIALS AND METHODS
Study site

Yunnan province (21°09′–29°15′N and 97°32′–106°12′E), 
located in southwest China, is one of the most biodiverse 
regions in China and belongs to the Indo-Burma biodiversity 
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hotspot (Myers et al. 2000; Yang et al. 2004). Yunnan adjoins 
the eastern Asia monsoon region in the east, the tropical mon-
soon region of southern Asia in the south and west, and the 
Indo-China and Tibetan plateau region in the northwest. This 
region is divided according to temperature into tropical, sub-
tropical and temperate climate zones. It is a highland province 
with a terraced terrain stretching from the northwest (6740 m 
a.s.l.) to the southeast (76 m a.s.l.). The variation in elevation 
promotes a variety of microclimates (Wu et al. 1987).

From 2011 to 2012, we established three transects: the 
tropical transect located in Xishuangbanna National Nature 
Reserve, the subtropical transect located in Ailaoshan National 
Nature Reserve and the subalpine transect located in Yulong 
Snow Mountain Nature Reserve (Fig.  1). Each transect 
included four elevation zones: 800 m, 1000 m, 1200 m and 
1400 m in Xishuangbanna; 2000 m, 2200 m, 2400 m and 2600 
m in Ailaoshan; and 3200 m, 3400 m, 3600 m and 3800 m in 
Yulong Snow Mountain. Within each elevation zone, we set up 
five replicate plots of 20 m × 20 m that were spaced at least 200 
m from each other. Anthropogenic and natural disturbances, 
such as large canopy gaps in the plots, were avoided. To survey 
seedlings, in 2013 and 2014, five 1 m × 1 m seedling plots were 
established at the four corners and the center of the each plot 
producing a total of 100 plots for each elevational transect.

Data collection

Within each 20 m × 20 m plot, all trees with a DBH equal to 
or greater than 5 cm were measured, tagged and identified. 

We defined the individuals with DBH equal to or greater than 
10  cm as adults. Within each 1 m × 1 m seedling plot, all 
individuals with a stem diameter less than 1  cm (hereafter 
referred to as seedlings) were measured, tagged and identified 
to species. The seedling data collected from the five 1 m × 1 
m seedling plots in each plot were pooled before analysis. For 
adults, we recorded 2067 individuals from 212 species, and 
for seedlings we recorded 1843 individuals from 218 species.

For each plot, we determined elevation from GPS coordinates 
using GARMIN GPSMAP 60CSX (Garmin Corporation, China), 
and both slope and aspect were calculated from a HRB DQY-1 
geologic compass (Harbin Optical Instrument Factory, China). 
We measured soil moisture at the end of both the dry season 
(April 2014) and rainy season (October 2014) using a conductiv-
ity probe (Theta probe MPM-160B, ICT International Proprietary 
Limited, Armidale, Australia). For each seedling plot, we meas-
ured the soil moisture 5 cm below the ground at five randomly 
selected points and calculated the average soil moisture in each 
plot. We generated five environmental variables: (i) elevation, 
(ii) soil moisture in the dry season, (iii) soil moisture in the rainy 
season, (iv) slope, and (v) aspect (sine-transformed).

Data analysis

Phylogenetic tree reconstruction.

We used a new tool for reconstructing phylogenies of seed 
plants (S.PhyloMaker), based on an updated megaphylogeny 
of vascular plants (PhytoPhylo), to reconstruct our phyloge-
netic tree (S.PhyloMaker and PhytoPhylo are available in R; 
Qian and Jin 2015). We first standardized the spelling and 
nomenclature of our species list according to The Plant List 
(TPL, www.theplantlist.org). All names in the species list 
for each transect that are considered synonyms in TPL were 
replaced with their accepted names in TPL. Then we assigned 
a family name to each species in our species list. We used the 
R package “S.PhyloMaker” with Scenario 3 to generate a phy-
logenetic tree of our species list (see details in S.PhyloMaker 
package; Qian and Jin 2015). Following the BLADJ algorithm 
approach implemented in the software Phylocom (Webb et al. 
2008), we constructed the phylogenetic tree of our species list 
by adding species to the appropriate family or genus.

Taxonomic and phylogenetic beta diversity across spatial 
and environmental gradients.

For each pair of plots, we calculated a taxonomic similarity 
index and a phylogenetic similarity index of seedlings and 
adult trees. To calculate taxonomic similarity, we used the 
Sørensen index (Sørensen 1948) which is one of the most 
commonly used taxonomic similarity indices based on the 
presence or absence of shared species. To quantify phylogen-
etic diversity, we utilized the widely used similarity index, 
PhyloSor. Both Sorensen and PhyloSor indices are incidence-
based. We used these indices because Sørensen and PhyloSor 
are analogs of each other (Bryant et al. 2008; Swenson 2011) 
making them comparable within this study. Bryant et  al. 
(2008) define these indices as:

Figure 1:  elevational transects in Yunnan Province. Elevational tran-
sects were located in tropical (Xishuangbanna; 800 m, 1000 m, 1200 
m and 1400 m), subtropical (Ailaoshan; 2000 m, 2200 m, 2400 m and 
2600 m), and subalpine (Lijiang; 3200 m, 3400 m, 3600 m and 3800 
m) Yunnan Province, China. The map was generated using ArcGIS 
10.1 (www.esri.com).
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S rensen 2 S S Sij i jø = ´( ) +( )/

and

PhyloSor 2 BL BL BLij i j= ´( ) +( )/

Where Sij is the number of species shared between localities i 
and j, Si and Sj are the numbers of species in localities i and j, 
BLij is the total length of the branches shared between locali-
ties i and j, and BLi and BLj are the total branch lengths in 
localities i and j, respectively.

Values of both Sørensen index and PhyloSor index range 
from 0 (no similarity) to 1 (complete similarity). Taxonomic 
dissimilarity (i.e. 1—Sørensen) and phylogenetic dis-
similarity (i.e. 1—PhyloSor) are used here as measures of 
taxonomic beta diversity and phylogenetic beta diversity, 
respectively.

We used multiple regression on distance matrices (MRM) 
to partition variation both in taxonomic and phylogenetic 
beta diversity into fractions explained by environmental 
and spatial distance in both seedling and adult tree stages 
(Legendre et al. 1994; Lichstein 2007). MRM is similar to a 
partial Mantel’s test and can be used to examine the cor-
relation between the dependent distance matrix and the 
independent distance matrices. We constructed the spatial 
distance matrix by calculating the spatial distance between 
each pair of plots using the latitude/longitude coordinates 
and altitude in the center of each plot. An environmental 
distance matrix was constructed using the Euclidean distance 
between each pair of plots based on the five environmental 
factors (all factors were standardized by subtracting the mean 
value of the variable and dividing by one standard deviation 
before analyses).

We used linear regression models to quantify the degree 
of taxonomic and phylogenetic beta diversity across environ-
mental and spatial gradients (Qian et al. 2013). A  slope (an 
estimate) of the regression model represents the strength of 
the taxonomic or phylogenetic beta diversity. The steeper the 
slope, the greater the taxonomic or phylogenetic beta diver-
sity across environmental and spatial distances.

Taxonomic and phylogenetic similarities between 
seedlings and adult trees.

We used the Sørensen index and the PhyloSor index to cal-
culate the taxonomic similarity and phylogenetic similarity 
between seedling and adult assemblages within each eleva-
tional zone. All trees or seedlings from the five plots in the 
same elevation were pooled and treated as a single large plot 
in this analysis. We used linear regression modeling to quan-
tify the bivariate relationships of taxonomic and phylogenetic 
similarity with elevation.

The above statistical analyses were performed using the 
R packages “ecodist”, “vegan” and “picante” (Dixon 2003; 
Goslee and Urban 2007; Kembel et al. 2010; R Development 
Core Team 2013).

RESULTS
In general, relatively high taxonomic beta diversity and low 
phylogenetic beta diversity were found at both seedling and 
adult stages across all three transects (Figs. 2 and 3). The trop-
ical transect had similar taxonomic and phylogenetic beta di-
versity patterns to the subtropical and subalpine transects. In 
general, the taxonomic beta diversity within seedling assem-
blages was lower than in adult assemblages, except in the 
subtropical transect, which showed higher taxonomic beta 
diversity at the seedling stage (Fig. 1b and c).

For taxonomic beta diversity, in tropical and subalpine 
transects, environmental distance alone explained much 
more taxonomic beta diversity than spatial distance at the 
adult stage when compared to the seedling stage (tropical 0.2 
vs. 0.14, subalpine 0.17 vs. 0.05, respectively). In the subtrop-
ical transect, by contrast, environmental distance explained 
more variability in seedling beta diversity than for adult trees 
(seedlings 0.06, adult trees 0.02). Spatial distance explained 
much more variation in taxonomic beta diversity at the seed-
ling stage than at the adult stage in the tropical and subtropi-
cal transects (tropical 0.10 vs. 0.04, and subtropical 0.07 vs. 
<0.01, respectively), but in the subalpine transect, spatial dis-
tance explained more variance at the adult stage than at the 
seedling stage (seedlings 0.05, adult trees <0.01).

For phylogenetic beta diversity, in subalpine transects, 
environmental distance explained much more variation at 
the adult stage than at the seedling stage (0.14 vs. 0.02, 
respectively), but in the tropical transect, the reverse was 
true (seedlings 0.17, adult trees 0.12). Spatial distance 
explained much more variation in phylogenetic beta diver-
sity at the adult stage than at the seedling stage in trop-
ical and subalpine transects, but in the subtropical transect 
the reverse was true (seedlings 0.08, adult trees <0.01) 
(Table 2).

The taxonomic and phylogenetic similarity values between 
seedling and adult assemblages for all elevations in our study 
varied across all three transects. Phylogenetic similarities are 
consistently higher than taxonomic similarities (Fig. 4), but 
there is no significant relationship between species similar-
ity and elevation. There is a significant relationship between 
phylogenetic similarity and elevation with seedling and adult 
assemblages more closely correlated at higher elevations.

DISCUSSION
We investigated taxonomic and phylogenetic beta diversity in 
different life stages of trees across three elevational transects in 
tropical, subtropical, and subalpine forest types in China. Our 
results show that the degrees (i.e. regression slopes in Figs. 2 and 
3) of taxonomic and phylogenetic beta diversity varied between 
seedling and adult stages, reflecting changes in the niche-based 
(i.e. environmental distance) and stochastic (spatial distance) 
ecological processes across different life stages. These changes 
may be explained by biogeographic and evolutionary history, 
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as well as the combined effect of environmental filtering, dis-
persal limitation and anthropogenic disturbance.

Results relating to phylogenetic distance will by neces-
sity involve evolutionary explanations (Graham and Fine 
2008). Two mechanisms could produce the observed pat-
terns. Turnover across sites may reflect active evolutionary 

habitat-partitioning in situ, resulting in closely related species 
turning over across adjacent sites (Fine and Kembel 2011). 
Alternatively, and perhaps more likely, the regional species-
set in each location represents the consequences of relatively 
recent evolutionary radiations and, accordingly, contains 
closely related species—in other words, they are based on 

Figure 2:  relationships between taxonomic beta diversity and environmental and spatial distance in three transects. Open circles are seedlings, 
closed circles are adult trees. (a–c) are relationships between taxonomic beta diversity and environmental distance in tropical, subtropical and 
subalpine transects, and (d–f) are relationships between taxonomic beta diversity and spatial distance in tropical, subtropical and subalpine 
transects, respectively.
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biogeographic contingency. These species then assort them-
selves across elevations either based on niche-based processes 
(i.e. environmental filtering) or spatial-based processes (i.e. 
dispersal limitation; Myers et al. 2013). In this study, the sig-
nificant influence of environmental distance on phylogenetic 
beta diversity may indicate that environmental filtering selects 

more closely related species which tend to be more ecologi-
cally similar due to evolutionary conservatism (Losos 2008; 
Wiens et al. 2010). These results are in line with those of the 
few other studies in which taxonomic and phylogenetic beta 
diversity have been compared. In a North American study, 
the spatial turnover of plant species was predominantly due 

Figure 3:  relationships between phylogenetic beta diversity and environmental and spatial distance in three transects. Open circles are seed-
lings, closed circles are adult trees. (a–c) are relationships between phylogenetic beta diversity and environmental distance in tropical, subtrop-
ical and subalpine transects, and (d–f) are relationships between phylogenetic beta diversity and spatial distance in tropical, subtropical and 
subalpine transects, respectively.
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to the turnover of phylogenetically related species (Qian et al. 
2013). This finding also has been reported in birds (Graham 
et al. 2009).

Closely related species generally have similar environmen-
tal requirements (Losos 2008), so environmental filtering 
should select phylogenetically related species at both seedling 
and adult stages. As this environmental filtering strengthens 
with increasing elevation, more phylogenetically related spe-
cies are likely to be selected (Qian et  al. 2014). Our results 
comport with this expectation, as across all elevations, phy-
logenetic similarity between adult and seedling assemblages 
rose significantly with elevation, although there was no such 
relationship for taxonomic similarity (Fig. 4).

This study region experienced a warm and humid environ-
ment ca. 20 million years ago with a diverse ancient tropi-
cal vegetation (Wu et al. 1987). Subsequently, the progressive 
southeasterly uplift of the Tibetan Plateau drove climatic 
changes and, as a result, significant changes in the flora and 
vegetation types (Jacques et al. 2014). Consequently, north-
ern Yunnan (Lijiang) became a refuge for Palearctic species, 
whereas the more southerly site (Xishuangbanna) became a 
refuge for palaeotropical floristic species, with our subtropi-
cal site in Central Yunnan (Ailaoshan) representing a transi-
tional zone (Li et al. 2015; Yan et al. 2009). Our study revealed 
an inconsistent relative contribution of environmental and 
spatial distances to beta diversity in tropical, subtropical and 
subalpine transects (Table  1 and 2). Previous studies have 
suggested that changes in dominance patterns reflect differ-
ing ecological mechanisms within different forests perhaps 
explained by a multifaceted biogeographic history (Condit 
et al. 2002; De Cáceres et al. 2012; Myers et al. 2013).

In this regard, our results agree with several previous stud-
ies, which have shown that the spatial effect was a key driver 
of tree species distributions from saplings to mature trees in 
Malaysian tropical forests (He et al. 1997; Seidler and Plotkin 

2006). We found that the relative contribution of spatial dis-
tance decreased from the seedling to the adult tree stage in 
the tropical and subtropical transects (Table  1), consistent 
with a previous study in the same Xishuangbanna tropi-
cal forest. Hu et al. (2012a) showed that the effect of spatial 
processes decreased with increasing tree size (DBH ≥ 1cm) at 
small spatial scales. This pattern highlights the importance of 
distance-dependent processes (e.g. dispersal) on the varia-
tion in community composition at the early stage of tree life 
history in tropical forests (Arieira et al. 2016). Conversely, in 
subalpine transects, we found that the composition of adult 
species between assemblages showed stronger spatial depend-
ence (Table  1). Some spatially structured ecological factors 
that we did not measure such as soil nutrients may have 
had a strong effect on the survival of tree species into their 
later stages (Gilbert and Bennett 2010; Smith and Lundholm 
2010), possibly accounting for the fact that spatial distance 
explained more of the variability in species composition in the 
adult than in the seedling stage.

Conflicting results across transects might, in large part, be 
associated with climatic and topographic drivers of ambient 
environmental conditions. For instance, some studies were 
conducted in areas with more complex and steeper gradi-
ents (Yang et al. 2015), while other studies were conducted 
in less extreme environmental gradients (Kanagaraj et  al. 
2011; Seidler and Plotkin 2006). Communities with differ-
ent proportions of long-distance dispersed species may result 
in different rates of turnover for different life stages (Yang 
et al. 2016). Species that are capable of long-distance disper-
sal consistently showed less spatial clustering. These species 
(such as those dispersed by wind or frugivorous birds) may 
have seedlings far from the parent tree, but only the seed-
lings establishing in suitable habitat survived to more mature 
stages (Metz 2012), and suitable habitat is always spatial cor-
related (Harms et al. 2001). In contrast, species with relatively 
short dispersal capabilities (such as those dispersed by grav-
ity) will likely exhibit the consequences of dispersal limitation 
across all life stages. Accordingly, taxonomic beta diversity 
will increase with life stage for communities with a large pro-
portion of long-distance dispersal species and, in contrast, will 
be more stable across life stages for communities with a large 
proportion of short dispersal distance species. In this regard, 
we found contrasting result between subtropical transect and 
the other two transects (Table 1). There are also many other 
mechanisms that might lead to the unmatched species com-
position between adult trees and seedlings. Conspecific nega-
tive density dependence has been widely recorded in many 
kinds of forests and results in a lack of conspecific seedlings 
close to their parent trees (Johnson et al. 2012). Recruit limi-
tation can also lead to an absence of conspecific seedlings in 
the understory (Hurtt and Pacala 1995). Moreover, canopy 
closure may exclude shade intolerant seedlings in the under-
story (Comita and Hubbell 2009; Rueger et al. 2009).

When the various effects of environmental and spatial dis-
tance that we observed tracked the latitudes of our study plots 

Figure  4:  taxonomic and phylogenetic similarity between seed-
lings and adult trees along the elevational gradient sampled (open 
circles: taxonomic similarity; closed circles: phylogenetic similarity, 
R-squared = 0.52, F statistic= 10.69, P value < 0.01).
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(that is: tropical to subtropical to subalpine) then we regard 
this as an ‘expected’ result because of the significant changes 
in climate (exacerbated by altitude) that this sequence of 
sites encompasses. When other patterns emerged, these 
may either reflect taxonomic idiosyncrasies of the plots (as 
discussed above) or historical and on-going anthropogenic 
impacts which may be overwhelming the ‘natural’ patterns 
that might otherwise be observed (Passy and Blanchet 2007; 
Vellend et al. 2007). The types and intensity of on-going use 
of the forests differ substantially. All forests have been used 
in the past for extraction of forest products from selective log 
removal to gathering of medicinal and culinary herbs, fungi 
and other minor forest products (Yang et al. 2004; Zhang and 
Cao 1995). This process is on-going, especially in the subal-
pine forest sites. These subalpine sites also continue to be used 
for grazing by horses, sheep and yaks (Feng et al. 2006).

In summary, we investigated the taxonomic and phylo-
genetic beta diversity of adult tree and seedling assemblages 
within forests across tropical, subtropical and subalpine 
elevational transects in southwest China. We demonstrated 
that environmental conditions, as well as spatial variables, 
shape the taxonomic and phylogenetic beta diversity among 
these three transects. Our results highlight the importance 
of phylogeny for fully understanding the pattern of seedling 
to adult transformation along an environmental gradient. 

We suggest long-term monitoring of tree species composi-
tion among different life stages to improve understanding 
of the ecological processes that drive these patterns of com-
munity structure.
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Table 1:  variation in taxonomic beta diversity explained by environmental and spatial distances across seedling and adult tree 
communities in three elevational transects using multiple regressions on distance matrices

Location
Response distance 
matrix

Combination of environmental and 
spatial distance Environmental distance Spatial distance

Tropical transect Seedling 0.32*** 0.14*** 0.10***

Adult tree 0.27*** 0.2*** 0.04***

Subtropical transect Seedling 0.11*** 0.06*** 0.07***

Adult tree <0.01 0.02 <0.01

Subalpine transect Seedling 0.05** 0.05*** <0.01*

Adult tree 0.26*** 0.17*** 0.05***

***P < 0.001, **P < 0.01, *P < 0.05. “Combination of environmental and spatial distance” represents the variation explained by both environ-
mental and spatial components; “environmental distance” represents the variation explained purely by the environmental component; “spatial 
distance” represents the variation explained purely by the spatial component.

Table 2:  variation in phylogenetic beta diversity explained by environmental and spatial distances across seedling and adult tree 
assemblages in three elevational transects using multiple regressions on distance matrices

Transect location
Response distance 
matrix

Combination of environmental and 
spatial distance Environmental distance Spatial distance

Tropical transect Seedling 0.31*** 0.17*** 0.07***

Adult tree 0.35*** 0.12*** 0.14***

Subtropical transect Seedling 0.05*** 0.01** 0.08***

Adult tree <0.01 0.02 <0.01

Subalpine transect Seedling <0.01 0.02 0.01

Adult tree 0.18*** 0.14*** 0.02**

***P < 0.001, **P < 0.01. “Combination of environmental and spatial distance” represents the variation explained by both environmental and 
spatial components; “environmental distance” represents the variation explained purely by the environmental component; “spatial distance” 
represents the variation explained purely by the spatial component.
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