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 

Abstract—The emerging near-surface light detection and 

ranging (lidar) platforms (e.g., terrestrial, backpack, mobile and 

unmanned aerial vehicle/UAV) have shown great potential for 

forest inventory. However, different lidar platforms have 

limitations either in data coverage or in capturing under-canopy 

information. The fusion of multi-platform lidar data is a potential 

solution to this problem. Due to the complexity and irregularity of 

forests and the inaccurate positioning information under forest 

canopies, current multi-platform data fusion still involves 

substantial manual efforts. In this study, we proposed an 

automatic multi-platform lidar data registration framework based 

on the assumption that each forest has a unique tree distribution 

pattern. Five steps are included in the proposed framework, i.e. 

individual tree segmentation, triangulated irregular network (TIN) 

generation, TIN matching, coarse registration, and fine 

registration. TIN matching, as the essential step to find 

corresponding tree pairs from multi-platform lidar data, uses a 

voting strategy based on the similarity of triangles composed of 

individual tree locations. The proposed framework was validated 

by fusing backpack and UAV lidar data and fusing multi-scan 

terrestrial lidar data in coniferous forests. The results showed that 

both registration experiments could reach a satisfying data 

registration accuracy (horizontal RMSE <30 cm, vertical RMSE 

<20 cm). Moreover, the proposed framework was insensitive to 

individual tree segmentation errors, when the individual tree 

segmentation accuracy was higher than 80%. We believe that the 

proposed framework has the potential to increase the efficiency of 

accurately registering multi-platform lidar data in forest 

environments. 

Index Terms—multi-platform lidar, tree location, registration, 

forest 

I. INTRODUCTION 

IGHT detection and ranging (lidar) can be used to accurately 

estimate forest structure attributes (e.g., tree height, 
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diameter at breast height/DBH, canopy cover, leaf area index, 

crown base height) from its rich three-dimensional (3D) 

information [1]. It has been proven to be a highly useful remote 

sensing technique in the practices of forest inventory [2]-[4] and 

forest management [5]-[7]. Currently, airborne, unmanned 

aerial vehicle (UAV)-borne, mobile, and terrestrial lidar 

systems are the most commonly used lidar platforms in forest-

related applications [8]-[11]. However, each of these lidar 

platforms has its own limitations. The down-looking airborne 

and UAV-borne lidar systems can provide highly accurate tree 

canopy information, but lack tree trunk information [12]; 

mobile lidar systems (e.g., backpack lidar) can provide detailed 

tree trunk information, but the limited vertical field of view and 

measurement range may result in the missing of upper canopy 

information [13]; single-location scans of terrestrial laser 

scanning (TLS) suffer from the occlusion effect of branches and 

leaves, and the registration of multi-scan TLS data can be 

highly time-consuming [14], [15]. The fusion of multi-platform 

lidar data has the potential to provide an ultimate solution to 

address the limitations of each lidar platform. 

Currently, there are three commonly used point cloud 

registration frameworks, including target-based methods, 

feature-based methods, and point-based methods [16]-[18]. 

Target-based methods usually need the assistance of exterior 

information to register lidar point clouds, e.g., positioning 

information from a global positioning system (GPS) [19], 

registration targets that can be easily identified [20], [21], or 

color information provided by cameras [22], [23]. Feature-

based methods work similarly to target-based methods, which 

use tie points/lines/polygons to register lidar point clouds, but 

these features are identified within lidar point clouds (e.g., 

buildings, roofs, roads and traffic signs) [24]. Point-based 
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methods directly match lidar point clouds based on the 

geometric information provided by lidar points, and the 

iterative closest point (ICP) algorithm is one of the most widely 

used methods under this category [25], [26]. However, point 

cloud registration frameworks are typically problematic in 

forested scenes. The exterior registration information required 

by the target-based methods is either unavailable, inaccurate or 

hard to acquire in forests. For example, GPS positioning 

information might become unreliable under forest canopies 

because of multipath errors and the attenuation of GPS signals 

[27]. Further, arranging ground targets or acquiring color 

imagery can be very time-consuming and expensive [28]. 

Feature-based methods are widely used in indoor and urban 

environments, where regular features (e.g., parallel and 

orthogonal line segments [29], [30] and conjugate least-squares 

surfaces [31], [32]) can be easily found. Forest environments 

have much higher complexity and irregularity than indoor and 

urban environments, and similar regular features as in indoor 

and urban environments can be hardly found or might be 

completely absent. Point-based methods, such as ICP, usually 

require the lidar point clouds to be coarsely registered before 

running the algorithm. However, such coarse registration in 

forest environments is usually achieved by manually selecting 

tie points, which is a labor-intensive and time-consuming 

process. 

Recently, marker-free data fusion solutions have been 

proposed to overcome the issues of missing referencing features 

in forests. For example, Henning et al. [33] and Liu et al. [34] 

proposed to use geometric features within the lidar point clouds 

(e.g., stem centers and stem curves) to register multi-scan TLS 

data; Kelbe et al. [35] proposed a multi-scan TLS data 

registration method through the use of populated triplet sets of 

DBHs, tree locations, and eigenvalues; Polewski et al. [36] used 

simulated annealing to find the optimal 3D transformation 

between the respective coordinate systems of two tree location 

sets derived from backpack and UAV lidar data. These methods 

either rely on tree stem geometric information or look for a 

globally optimized registration solution using constraints of tree 

attributes such as DBHs and tree locations. However, tree stem 

geometric information is unavailable in top-view lidar data (e.g., 

UAV lidar data), and globally optimized solutions might fail 

when the estimation accuracies of tree attributes are low. How 

to accurately and efficiently register multi-platform lidar point 

clouds in forested scenes is still a big challenge in lidar forest 

applications. 

In this study, we propose a novel multi-platform lidar data 

registration framework for forest applications based on the 

unique spatial distribution of trees in a forest stand, with tree 

pairs identified from multi-platform lidar data as the only 

required features in the registration process. This paper is 

organized as follows. Sections II introduces the methodology of 

the proposed data registration framework, Section III describes 

the experimental design and results for evaluating the proposed 

framework, Section IV discusses the robustness and limitations 

of the proposed framework and Section V gives the conclusion. 

II. METHODOLOGY 

The proposed framework includes five steps, i.e., individual 

tree segmentation, triangulated irregular network (TIN) 

generation, TIN matching, coarse registration, and fine 

registration (Fig. 1). The detailed information of each step is 

presented in the following sections. 

A. Individual Tree Segmentation 

Extracting individual tree locations is the pre-requisite of the 

proposed point cloud registration framework. Individual tree 

segmentation is a point cloud processing step that can 

automatically identify individual tree locations from lidar point 

clouds. There have been numerous individual tree segmentation 

algorithms proposed in the literature, which can be generally 

divided into two groups: canopy height model (CHM) 

segmentation [37]-[39] and point cloud segmentation (PCS) 

[40]-[42]. Lidar data acquired from different platforms and 

forest conditions usually require different segmentation 

schemes to obtain optimized segmentation results. Jakubowski 

et al. [43] made a comprehensive comparison of the 

performance of CHM segmentation and PCS under different 

forest conditions. The individual tree segmentation method 

should be chosen based on the data acquisition platform and 

forest conditions. The output individual tree coordinates (i.e., X, 

Y and Z) can be used as the input of the proposed framework. 

The Z coordinate of each tree is represented by the elevation of 

the tree base. In this study, we used the mean elevation of all 

ground points within a 1 m buffer to represent the Z coordinate 

so that the influence of different tree position definitions from 

different platforms (e.g., treetop from UAV-borne lidar and tree 

base from terrestrial lidar) can be minimized. 

B. TIN Generation 

This study assumes that every forest stand should have a 

unique spatial distribution of trees and this spatial pattern 

should not change in a short time period within which multiple 

lidar data sets are acquired. In other words, the spatial 

relationship between each tree and its neighboring trees should 

be constant. To identify the spatial pattern of tree distributions, 

the plane coordinates (i.e., X and Y) of each individual tree and 

its neighboring trees are transformed to a simple geometric 

feature by constructing a TIN using the Delaunay triangulation 

[44]. Based on the above-mentioned assumptions, a particular 

tree identified from different lidar platforms should form a 

similar TIN with its defined neighbors. Therefore, we should be 

able to find corresponding tree pairs by matching the TINs 

generated from different lidar platforms. 

In the process of TIN generation, each tree location is 

considered as a search point and its neighboring tree locations 

can be found by the k-nearest neighbor search method. 

Moreover, in order to avoid ambiguous TINs, the search point 

does not participate in the TIN generation. For example, as 
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Fig. 1.  The five-step process of the proposed multi-platform lidar registration framework. Red points represent the lidar data acquired from the side view backpack 

lidar, and green points represent the vertical UAV lidar data. 

 

shown in Fig. 2, the three search points have the same search 

neighbors. In the case of TIN generation including the search 

point itself, the generated TINs would be the same; if the search 

point is excluded, the generated TINs would be distinctive from 

each other. Two sets of TINs generated from segmented trees 

in multi-platform lidar data are represented as 𝑇𝐼𝑁1 =

{𝑇𝐼𝑁1
1, 𝑇𝐼𝑁2

1, … , 𝑇𝐼𝑁𝑘
1}  and 𝑇𝐼𝑁2 = {𝑇𝐼𝑁1

2, 𝑇𝐼𝑁2
2, … , 𝑇𝐼𝑁𝑙

2} , 

where k and l are the numbers of trees derived from two lidar 

datasets, respectively. 

 

 
Fig. 2.  An illustration of the TIN generation and ambiguous TIN elimination 
for tree locations using a point cloud from one platform. 

C. TIN Matching 

The plane coordinates (i.e., X and Y) of the same trees 

obtained by the individual tree segmentation from different 

lidar data can be slightly different. For example, the individual 

tree locations obtained from UAV-borne lidar data are centers 

of tree crowns; while the individual tree locations obtained from 

mobile and terrestrial lidar data are the centers of tree bases. 

Meanwhile, the incomplete point cloud of trees and the dense 

tree distribution can bring many undetected and falsely detected 

trees in segmentation. These errors caused by individual tree 

segmentation from different lidar data may bring failures in the 

tree matching process if very strict rules were used. Therefore, 

a tolerant matching method should be used to match TINs. To 

avoid falsely matched TINs during the tolerant matching 

process, the matched TINs are further filtered by using a 

random sample consensus (RANSAC)-based method. 

During the tolerant matching process, a voting strategy is 

used to count the number of similar triangles between two TINs 

and find the best matched TIN pairs iteratively. Each TIN in 

𝑇𝐼𝑁1  is compared with all TINs in 𝑇𝐼𝑁2  to calculate the 

matching scores based on the similarities among the triangles 

within each TIN pair. The similarity of triangles is evaluated by 

two parameters, the area similarity S and the angle similarity I. 

Assuming that 𝑇𝑟𝑖𝑝
𝑖,1

 is the pth triangle in 𝑇𝐼𝑁𝑖
1 , and 𝑇𝑟𝑖𝑞

𝑗,2
 is 

the qth triangle in 𝑇𝐼𝑁𝑗
2, the area similarity S can be calculated 

from the following equation, 

 

𝑆 = 1 −
|𝑙𝑎𝑙𝑏 sin 𝐶−𝑙𝑎

′ 𝑙𝑏
′ sin 𝐶′|

𝑙𝑎𝑙𝑏 sin 𝐶+𝑙𝑎
′ 𝑙𝑏

′ sin 𝐶′

2

 (1) 

 

where 𝑙𝑎 and 𝑙𝑏 are two sides of 𝑇𝑟𝑖𝑝
𝑖,1

, 𝑙𝑎
′  and 𝑙𝑏

′  are two sides 

of 𝑇𝑟𝑖𝑞
𝑗,2

, and 𝐶  and 𝐶′ are the angles between 𝑙𝑎  and 𝑙𝑏  and 

between 𝑙𝑎
′  and 𝑙𝑏

′ , respectively. The triangle pair 𝑇𝑟𝑖𝑝
𝑖,1

 and 

𝑇𝑟𝑖𝑞
𝑗,2

 has three angle similarity components, i.e., IA, IB, and IC, 

where A, B and C are the three angles of 𝑇𝑟𝑖𝑝
𝑖,1

. Zhou et al. [45] 

proposed the criteria of calculating angle similarity based on the 

Gaussian distribution. Taking IC as an example, the angle 

similarity IC between 𝐶 and 𝐶′ can be calculated as, 
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                                 𝐼𝐶 = 𝑐𝑜𝑠3(
𝜋

2
(1 − 𝑢(𝐶))) (2) 

𝑢(𝐶) = 𝑒
−

1

2𝜎2(𝐶−𝐶′)2

 (3) 

 

where 𝜎 = 𝐶/6. The final angle similarity I is calculated as the 

average of the three angle similarity components, 

 

       𝐼 = (𝐼𝐴+𝐼𝐵+𝐼𝐶)/3 (4) 

 

The overall similarity OS between the triangle pair 𝑇𝑟𝑖𝑝
𝑖,1

 and 

𝑇𝑟𝑖𝑞
𝑗,2

 is calculated as, 

 

                                       𝑂𝑆 = (𝐼 + 𝑆)/2 (5) 

 

Note that if I or S was smaller than the user-defined thresholds 

TI or TS, the OS value should be set to zero instead of being 

calculated from Eq. 5. By iterating the calculation between all 

triangle combinations, an OS matrix (OSM) can be built as, 

 

                  𝑂𝑆𝑀 = [

𝑂𝑆11 𝑂𝑆12

𝑂𝑆21 𝑂𝑆22

⋯ 𝑂𝑆1𝑛

⋯ 𝑂𝑆2𝑛

⋮ ⋮
𝑂𝑆𝑚1 𝑂𝑆𝑚2

⋮ ⋮
… 𝑂𝑆𝑚𝑛

] (6) 

 

where m and n are the number of triangles in 𝑇𝐼𝑁𝑖
1 and 𝑇𝐼𝑁𝑗

2, 

respectively. 

The voting process for the TIN pair of 𝑇𝐼𝑁𝑖
1  and 𝑇𝐼𝑁𝑗

2  is 

shown in Fig. 3. Within OSM, the largest OS is first identified 

and marked, and all elements on the corresponding row and 

column of the matrix are set to zero. Then, the new largest OS 

excluding the previous largest OS is identified and marked, and 

all elements on the corresponding row and column of the matrix 

are set to zero. This process is repeated until all unmarked 

elements become zero. Each of the remaining marked elements 

is treated as an equal-weighted vote with a value of one, and the 

final vote score (VS) between 𝑇𝐼𝑁𝑖
1 and 𝑇𝐼𝑁𝑗

2 is calculated as 

the sum of all votes. 

 

 
Fig. 3.  An illustration of the voting process for TIN matching. Elements colored 

in green represent marked elements and elements colored in red represent the 

largest element excluding marked elements. 
 

After calculating the VS between 𝑇𝐼𝑁𝑖
1 and all TINs in 𝑇𝐼𝑁2, 

the TIN(s) with the largest VS is/are picked out. If the largest 

VS value is smaller than the user-defined voting score threshold 

TVS, the search point in dataset 1 is treated as no matched tree 

location point can be found in dataset 2. If the largest VS value 

is larger than user-defined threshold TVS and there is only one 

matched point in dataset 2, the search point in dataset 1 and the 

matched tree location point in dataset 2 are treated as a pair of 

trees. If the largest VS value is larger than user-defined 

threshold TVS and there are more than one matched points in 

dataset 2, the thresholds TI and TS are iteratively increased to 

eliminate the one-to-many phenomenon using the following 

equations, 

 

                                 𝑇𝐼
′ = (1 − 𝑓)𝑇𝐼 × 1.1𝑁 (7) 

                                 𝑇𝑠
′ = (1 − 𝑓)𝑇𝑠 × 1.1𝑁 (8) 

                                   𝑓 =
𝑝𝑙𝑚𝑎𝑥

−50

50
× 10% (9) 

 

where N is the number of iterations which should be smaller 

than the user-defined maximum number of iterations TN, and 

𝑝𝑙𝑚𝑎𝑥
 is the percentile of the maximum side in a triangle among 

all sides of triangles of the whole study area. Since 𝑝𝑙𝑚𝑎𝑥
 is 

between 0 and 100, the scale factor f should be in the range of 

[-0.1, 0.1]. The scale factor f here is used to give looser 

thresholds in areas with sparse trees, and give stricter thresholds 

in areas with dense trees, because the individual tree 

segmentation error is higher in areas with dense trees. 

The whole TIN matching process can be described as the 

following pseudo codes. 
For i = 1 to k 

Generate 𝑇𝐼𝑁𝑖
1 from the neighbors of the search tree point i 

  For j = 1 to l 

Generate 𝑇𝐼𝑁𝑗
2 from the neighbors of the search tree point j 

For p = 1 to m 

    For q= 1 to n 

     Calculate S and I between 𝑇𝑟𝑖𝑝
𝑖,1 and 𝑇𝑟𝑖𝑞

𝑗,2
 

     If S ≥ TS and I ≥ TI 

      OSM(p, q) = (S+I)/2 

     Else 

      OSM(p, q) = 0 

    End for 

   End for 

   Do when all unmarked elements in OSM are not 0 

    Find and mark the largest unmarked OSM(row, col) 

    Set unmarked OSM(row, :) and OSM(:, col) as 0 

   End do 

   VS(i, j) = the number of marked elements in OSM 

  End for 

  If max(VS(i, :)) < TVS 

   There is no matched tree location point for i 

  Else if max(VS(i, :)) ≥ TVS  and count(max(VS(i, :))) == 1 

The matched tree point in 𝑇𝐼𝑁2 for tree location point i is found 

  Else if max(VS(i, :)) ≥ TVS  and count(max(VS(i, :))) > 1 

Updating the thresholds TI and TS and iterate the TIN matching process 

until count (max(VS(i, :))) == 1 or the number of iterations > TN 

End For 

 

From the above process, a set of tree location pairs can be 

collected from two lidar datasets from different platforms. The 

number of matched tree pairs is usually much higher than the 

required number of tree pairs for performing coarse registration. 

To ensure the coarse registration quality, the matched tree pairs 

are filtered and optimized by the RANSAC algorithm [46], [47], 

using the OpenCV implementations with default parameters. 



> TGRS-2019-00630.R2 < 

5 

 

5 

D. Coarse Registration 

The matched tree pairs are acquired through the TIN 

matching of plane coordinates (i.e., X and Y), while the 3D 

coordinates (i.e., X, Y and Z) of matched tree pairs from multi-

platform lidar data are used to calculate the rotation matrix and 

translation vector to transform the target point cloud to the 

source point cloud. Considering the fact that the distance 

measurements from different lidar platforms are all highly 

accurate [48], it is reasonable to set the scale factor of the 

rotation matrix as 1. Therefore, the coarse registration process 

can be expressed as, 

 

                                        [
𝑋
𝑌
𝑍

] = 𝑅 [
𝑋′

𝑌′

𝑍′

] + 𝑇 (10) 

 

where X, Y and Z are the coordinates of the source point cloud, 

𝑋′, 𝑌′ and 𝑍′ are the coordinates of the target point cloud, and 

R and T are the rotation matrix and translation vector, 

respectively. 

E. Fine Registration 

In the fine registration step, the ICP algorithm, a point-based 

matching method based on minimizing the cumulative distance 

between two point clouds [49], is used to further improve the 

multi-platform lidar data registration accuracy. To reduce the 

chance of mismatching errors in ICP results, the ICP algorithm 

should be performed on the overlapped areas of different lidar 

datasets with distinct characteristics. For example, if two multi-

platform lidar datasets share a large portion of ground points 

and the ground is a rugged terrain, their ground points can be 

selected to run the ICP algorithm; if two multi-platform lidar 

datasets share a large portion of tree trunks, their point clouds 

within the height range of tree trunks can be selected to run the 

ICP algorithm. 

III. EXPERIMENTAL ANALYSIS 

A. Study Area and Data Collection 

The study area is located in the Mulan Paddock, Hebei 

Province, China (42.12° N, 117.35° E). It is a planted forest and 

the dominant tree species are Pinus sylvestris var. mongolica 

Litv. and Pinus tabuliformis Carrière. Three study sites were 

selected within the study area. Site 1 has an area of 7,890 m2 

with an 8 m elevation variation, site 2 has an area of 5,814 m2 

with a 46 m elevation variation, and site 3 has an area of 1,885 

m2 with a 3 m elevation variation. The average canopy cover is 

71%, 46%, and 65% in site 1, site 2 and site 3, the average tree 

height is 18 m, 17 m and 20 m, and the average tree density is 

283 trees/ha, 275 trees/ha and 1,056 trees/ha. Three widely used 

lidar platforms, including a backpack lidar platform, a UAV-

borne lidar platform, and a TLS platform, were used to collect 

multi-platform lidar data within the three study sites in August 

2018. Their hardware models and specifications are listed in 

Table I. The UAV lidar system (Green Valley International 

LiAir 200) integrates a HESAI Pandar40 laser scanner and a 

high-precision inertial navigation system, whose relative 

positioning accuracy is specified as ±5 cm. The backpack lidar 

system (Green Valley International LiBackpack 50) is equipped 

with a Velodyne Puck VLP-16 laser scanner, and its relative 

positioning accuracy is specified as ±5 cm. The Riegl VZ-400i 

is a high-precision TLS scanner, and its measurement accuracy 

is ±0.5 cm. Sites 1 and 2 were covered by both UAV and 

backpack lidar data. The UAV lidar data in site 1 and site 2 were 

collected from a single flight line and two flight lines, 

respectively. The flight attitude was about 150 m above ground 

at both study sites, and the overlap ratio between flight lines in 

site 2 was about 50%. The point density of the collected UAV 

lidar data is about 158 pts/m2 in site 1 and 238 pts/m2 in site 2 

(Fig. 4b and c). The backpack lidar data at study sites 1 and 2 

were all collected following a “S”-shape trajectory with a ~10m 

horizontal spacing. The collected backpack lidar data had an 

average point density of 2,042 pts/m2 in site 1 and 2,092 pts/m2 

in site 2 (Fig. 4b and c). It should be noted that the extents of 

UAV lidar data were slightly larger than those of backpack lidar 

data to ensure that they fully covered the backpack data. Site 3 

was only covered by TLS data. The Riegl VZ-400i scanner was 

used to cover the study area using four separate scans. The 

distance between the scan position 1 and scan position 2, 3 and 

4 was about 13 m, 15 m and 20 m, while the overlap ratio was 

about 51%, 40% and 33%, respectively. Six high-reflectance 

targets were installed in site 3, and they were used to manually 

register the TLS scans using the Riegl RiSCAN Pro software. 

In order to reduce the errors of individual tree segmentation 

caused by incomplete scan of trees, we used a rectangle with a 

size of 25 m × 25 m to clip the original TLS data of each scan. 

The average point density of each TLS scan was about 22,167 

pts/m2 (Fig. 4b and c). 

In study sites 1 and 2, we put a 60 cm × 90 cm referencing 

standard white board in an open area so that it could be seen by 

both the backpack lidar and UAV lidar (Fig. 5a). The 

referencing white board was used to evaluate the relative 

positioning accuracy of the collected backpack and UAV lidar 

data (Fig. 5b and c). By fitting a plane from the points falling 

on the referencing white board, the distance between each point 

and the fitted plane was calculated. The relative positioning 

accuracy was calculated as the root-mean-square error (RMSE) 

of these points to the fitted plane. As can be seen in Fig. 6, the 

backpack and UAV lidar data at both sites had a relative 

positioning error lower than 10 cm, which agreed with the 

nominal specifications from the manufacturer. The referencing 

white board was also used to evaluate the multi-platform lidar 

data registration accuracy in the following experiment. 

 
TABLE I  

SPECIFICATIONS OF THE THREE LIDAR PLATFORMS USED IN THIS STUDY 

 UAV Backpack Terrestrial 

Sensor HESAI 
Pandar40 

(GreenValley 

LiAir 200) 

Velodyne Puck 
VLP-16 

(GreenValley 

LiBackpack 50) 

VZ-400i 
(Riegl) 

Scan range 0.3-200 m 100 m 400 m 
Relative 

accuracy 
±5 cm ±5 cm ±0.5 cm 

Pulse repetition 

rate 
720 KHz 300 KHz 122 KHz 
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Angular 

resolution 

(Vertical) 

0.33° 2° better 

0.005° 

Angular 

resolution 

(Horizontal) 

0.2° 0.1° – 0.4° better 

0.005° 

 

 
Fig. 4.  (a) The location of the study area; (b) the collected UAV (left panel) 

and backpack (right panel) lidar data in study site 1, and their corresponding 
individual tree segmentation results (black dots); (c) the collected UAV (left 

panel) and backpack (right panel) lidar data in study site 2, and their 

corresponding individual tree segmentation results (black dots); and (d) the 
collected four TLS scans in study site 3, and their corresponding individual tree 

segmentation results (black dots). 

 

 

 
Fig. 5.  An example of (a) the setup of the referencing standard white board, 

and its corresponding point clouds obtained from (b) backpack lidar and (c) 
UAV lidar systems. 

 

 
Fig. 6.  The relative positioning accuracy of the collected backpack lidar data 

and UAV lidar data at the two study sites. 

 

B. Experiment Design 

1) Data Processing: It is inevitable to have noise in the 

collected lidar data due to factors such as tree movement with 

winds and flying birds. In this study, we used the outlier 

removal tool integrated in the GreenValley International 

LiDAR360 software (https://greenvalleyintl.com/software) to 

remove noise points in all collected lidar data. All lidar data 

were filtered to classify ground points using the improved 

progressive triangulated irregular network densification 

filtering algorithm proposed by Zhao et al. [50], which has 

shown to be robust under different forest and terrain conditions. 

Finally, the obtained ground points were used to normalize the 

original lidar point clouds to produce the input data for 

individual tree segmentation by using the LiDAR360 software. 

2) Individual Tree Segmentation: Different segmentation 

strategies were used to segment the UAV lidar data and the 

backpack and terrestrial lidar data. For the UAV lidar data, the 

top-down PCS algorithm proposed by Li et al. [40] was used to 

identify individual tree locations; and for the backpack and 

terrestrial lidar data, the bottom-up PCS algorithm proposed by 

Tao et al. [42] was used. These algorithms use a similar 

principle in the segmentation process, which first identifies seed 

points of individual trees and then labels other points by finding 

the shortest path to seed points using the comparative shortest-

path algorithm. The difference is that the top-down PCS 

algorithm finds seed points by recognizing treetops, but the 

bottom-up PCS algorithm finds seed points by recognizing tree 

bases. The PCS methods were selected in this study because 

studies have shown that they outperformed CHM methods in 

coniferous forests and were less influenced by under-canopy 

low-vegetation points [43]. 

To evaluate the individual tree segmentation results, we 

visually counted the number of trees and marked their 

corresponding locations from the backpack or terrestrial lidar 

https://greenvalleyintl.com/software
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data. Three accuracy statistics i.e., recall (r), precision (p), and 

F-score (F), were calculated by comparing with individual tree 

locations derived visually, 

 
𝑟 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(11) 

 
𝑝 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(12) 

 𝐹 = 2 ×
𝑟 × 𝑝

𝑟 + 𝑝
 

(13) 

 

where true positive (TP) denotes the number of trees correctly 

detected, false negative (FN) denotes the number of trees that 

were not detected, and false positive (FP) denotes the number 

of trees falsely detected. r indicates the tree segmentation 

completeness, p indicates the correctness of the detected trees, 

and F is the overall accuracy taking both commission and 

omission errors into consideration. Note that the individual tree 

segmentation accuracies of the UAV and TLS lidar data were 

calculated from the corresponding post-registered datasets so 

that they could be compared with individual tree locations 

derived visually. 

3) Multi-platform lidar data registration: Two experiments 

were conducted to evaluate the performance of the proposed 

multi-platform lidar data registration framework, i.e., the 

registration between backpack lidar data and UAV lidar data 

and the registration among multi-scan TLS data. There are 

overall five parameters in the proposed registration framework 

(Table II). Among these parameters, TI and Ts are two 

iteratively increasing thresholds, which can be set to relatively 

small values as initial values, and TN can be set to a relatively 

large value based on experience. The remaining two parameters 

NN and TVS can be estimated using a trial and error method. A 

detailed discussion of the parameter setting will be described in 

the discussion section. The two experiments used the same set 

of parameter values without any changes. The only difference 

in the registration procedures of the two experiments was that 

the registration of backpack and UAV lidar data used ground 

points to perform the fine registration, while the registration of 

multi-scan terrestrial lidar data used all points. Moreover, for 

the registration of TLS data, we used the data from scan position 

1 as the target data and the TLS data from scan positions 2, 3 

and 4 as the source data to be aligned with the reference 

coordinate system. 

 
TABLE II 

A LIST OF PARAMETERS IN THE PROPOSED MULTI-PLATFORM LIDAR DATA 

REGISTRATION FRAMEWORK AND THEIR CORRESPONDING VALUES USED IN 

THIS STUDY. 

Parameter Description Value 

NN The number of neighboring tree points used to 
build TIN 

9 

TS The initial threshold for area similarity 0.8 

TI The initial threshold for angle similarity 0.7 
TVS The threshold for voting score 5 

TN The max number of iterations 3 

 

4) Accuracy assessment: The registration accuracy of 

backpack and UAV lidar data was evaluated using the 

referencing white board. The backpack lidar points falling on 

the referencing white board were first used to fit a plane 

Z=𝑓(𝑋, 𝑌). Then, the horizontal and vertical distances of each 

transformed UAV lidar point falling on the referencing white 

board to the fitted plane were calculated, and the horizontal 

error EH and vertical error EV were calculated as, 

 

                                𝐸𝐻 = √
∑ (𝑋𝑖

′𝑌𝑖
′→𝑍=𝑓(𝑋,𝑌))2𝑛

𝑖=1

𝑛
 (14) 

                                𝐸𝑉 = √
∑ (𝑍𝑖

′→𝑍=𝑓(𝑋,𝑌))2𝑛
𝑖=1

𝑛
 (15) 

 

where n is the number of UAV points falling on the referencing 

white board, and 𝑋𝑖
′𝑌𝑖

′ → 𝑍 = 𝑓(𝑋, 𝑌)  and 𝑍𝑖
′ → 𝑍 = 𝑓(𝑋, 𝑌) 

represent the horizontal and vertical distances from a point to 

the fitted plane. 

Since the installed referencing white board was not within 

the scanning area of TLS scans, the above accuracy assessment 

methods could not be used for the evaluation of multi-scan TLS 

data registration. Considering the high positioning accuracy of 

TLS data and the high overlap rate between TLS scans, 

registration accuracy of multi-scan TLS data was represented 

by the residual after running ICP. The obtained ICP residual 

value was compared with the manual registration residual 

obtained using the Riegl RiSCAN Pro software. 

C. Backpack Lidar and UAV Lidar Registration Results 

The individual tree segmentation results from the backpack 

and UAV lidar data in the two study sites were shown in Fig. 

4b-e. Overall, the backpack lidar data allowed a very high 

individual tree segmentation accuracy. The F values of the two 

study sites were all higher than 0.95 (Table III). The individual 

tree segmentation accuracy from UAV lidar data was relatively 

lower compared to that from backpack lidar data (Table III). 

The individual tree segmentation accuracy in site 2 was slightly 

higher than that of site 1, which might be caused by the fact that 

the canopy coverage in site 2 was much lower than that in site 

1. Here, the displacement of tree locations was quantified by the 

difference in the distances between a pair of neighboring trees 

from different lidar datasets (Fig. 7). On average, there was an 

around 30 cm and 40 cm displacement in site 1 and site 2, 

respectively (Fig. 7b). 

 
TABLE III  

ACCURACY ASSESSMENT FOR THE INDIVIDUAL TREE SEGMENTATION 

RESULTS FROM THE BACKPACK AND UAV LIDAR DATA AT THE TWO STUDY 

SITES. 

 Site 1 Site 2 

Backpack UAV Backpack UAV 

TP 213 289 156 187 
FN 10 49 4 9 

FP 11 22 2 22 

r 0.955 0.855 0.975 0.954 
p 0.951 0.873 0.987 0.895 

F 0.953 0.864 0.981 0.924 
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Fig. 7.  (a) A schematic illustration of tree location displacement obtained from 

backpack and UAV lidar datasets, and (b) the average tree location 
displacements in site 1 and site 2. Red dots in (a) represent tree locations derived 

from backpack lidar data and green dots represent tree locations derived from 

UAV lidar data. d and d’ represent the distance between two neighboring trees. 
The displacement in (b) was calculated as the horizontal distance difference of 

a pair of trees before the registration. 

 

The TIN matching process identified 7 pairs of trees from site 

1 and 11 pairs of trees from site 2, which were used to perform 

the coarse registration. The standard deviations of residuals 

between tree locations after coarse registration were 0.84 m and 

0.93 m for site 1 and site 2, respectively. The two lidar datasets 

were closely aligned with each other following fine registration 

that the fused backpack UAV lidar point clouds in tandem 

provided more complete forest structural information than 

either platform alone (Fig. 8). and the horizontal error and 

vertical error after the fine registration step were 0.300 m and 

0.146 m, respectively, for site 1, and were 0.211 m and 0.187 

m, respectively, for site 2. 

 

 
Fig. 8.  Profiles of the registered backpack lidar data (red dots) and UAV lidar 

data (green points) in (a) site 1 and (b) site 2. 

 

D. Multi-scan TLS Data Registration Results 

The individual tree segmentation accuracy of the non-

registered TLS data was more than 95% for all four scans 

(Table IV). After TIN matching, there were 11, 10 and 8 trees 

reserved to calculate the rotation matrix and translation vector 

for the coarse registration between the TLS data from scan 

position 1 and those from scan position 2-4, respectively. The 

standard deviation of residuals between tree locations after 

coarse registration between the TLS data from scan position 1 

and those from scan position 2-4 was 0.161 m, 0.154 m and 

0.157 m. The four TLS scans matched with each other very well 

after the fine registration (Fig. 9) and the standard deviation of 

residuals was 0.038 m, 0.050 m and 0.053 m, compared with a 

value of 0.013 m, 0.009 m and 0.011 m obtained by manual 

registration using the Riegl RiSCAN Pro software. 
Table IV 

ACCURACY ASSESSMENT FOR THE INDIVIDUAL TREE SEGMENTATION 

RESULTS FROM THE MULTI-SCAN TLS DATA 

 Scan 1 Scan 2 Scan 3 Scan 4 

TP 73 66 74 63 

FN 1 2 3 1 
FP 1 0 1 2 

r 0.986 0.971 0.961 0.984 

p 0.986 1.000 0.987 0.969 
F 0.986 0.985 0.974 0.977 

 

 
Fig. 9.  (a) The final registration results of the four TLS scans on site 3 using 
the proposed framework; (b) a profile example of the registered TLS point 

cloud and enlarged examples of two tree segments in the profile. The black 

rectangle in (a) represents the extent of the profile and the “+” marks represent 
the scanning positions. 

IV. DISCUSSION 

Multi-platform lidar data registration is increasingly in 

demand in lidar forest applications. Through the fusion of 

multi-platform lidar data, it can overcome the limitations of 

single-platform/single-scan lidar data and allow for the more 

complete derivation of forest structure parameters [51]. 

However, due to the complexity and irregularity of forests and 

the often absent or inaccurate GPS positioning information, 

traditional point cloud registration methods can hardly be used 

in forest environments [52]. Recently, there have been 

successful attempts to develop marker free registration methods 

to increase the efficiency of multi-platform lidar data 

registration. Generally, these methods can be divided into two 

categories, i.e., looking for geometric features for registration 

inside the multi-platform lidar data (e.g., stem centers and stem 

curves) and looking for a globally optimized transformation 

solution based on lidar-derived tree attributes (e.g., tree height 

and DBH) [33-36]. The methods using geometric features 

inside the point clouds have a similar idea as the proposed 

framework, that is using the unique tree characteristics as the 

referencing features [33], [34]. However, compared with the 

proposed framework, these methods have disadvantages of less 

adaptability to different platforms. Currently, methods based on 

tree stem geometric features cannot be used in registrations 

involving top-view lidar data (e.g., UAV lidar data), because 

top-view lidar data cannot capture complete tree stem 

information. As to the methods using globally optimized 

transformation solution, they might not be achievable when the 

required tree attributes were inaccurate or missing. For example, 

the method proposed by Kelbe et al. [37] required accurate tree 

stem maps and DBH estimations, which can be hard to obtain 

from UAV lidar data [53]; and the method proposed by 

Polewski et al. [36] required a precondition that the Z axis of 

multi-platform lidar data should be well aligned or could be 

aligned by tree stem orientations, which can be hard to satisfy 

in complex forest environments due to the inaccurate GPS 

information under the forest canopy and the lack of trunk 

information in down-looking lidar platforms. The proposed 

registration framework only required tree locations to fuse 
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multi-platform lidar data, and does not require any exterior 

information to assist the registration process, which can largely 

improve the multi-platform lidar data registration applicability. 

Overall, the proposed framework worked well in both 

experiments in this study. The fusion of backpack and UAV 

lidar datasets achieved vertical accuracy better than 20 cm and 

horizontal accuracy better than 30 cm on sites 1 and 2. 

Considering the positioning uncertainty within the backpack 

and UAV lidar data and the error propagation effect during the 

registration, the registration results should satisfy many forest-

related applications. The horizontal displacement after 

registration for site 1 was much larger than that for site 2 (Fig. 

8). The possible reason might be that the terrain in site 1 was 

much flatter than site 2. Since the differences in Z values in flat 

terrain were not obvious, the process of the ICP algorithm might 

lack features in the Z direction. In this case, the ICP algorithm 

may converge to a local optimum [54], [55], which therefore 

leads to larger horizontal errors. The accuracy of the 

registration of multi-scan TLS data was much higher than that 

for the registration of backpack and UAV lidar data. This 

indicates that the performance of the proposed framework 

might be improved by increasing the precision of lidar data. 

Although the registration accuracy of multi-scan TLS data 

registration is still lower than that of using a manual registration 

method based on referencing targets, it can be used as a 

preliminary step before performing manual registration to 

increase the efficiency. Future studies can consider using the 

referencing targets as exterior information to further improve 

the registration accuracy.  

Individual tree segmentation is the prerequisite for the 

proposed registration framework, and the accuracy of 

individual tree segmentation might have a considerable 

influence on the registration accuracy. In this study, the side-

view backpack lidar data can obtain rich tree trunk information, 

and the corresponding individual tree segmentation accuracy is 

much higher than UAV lidar data (Table III). Therefore, this 

study matched UAV lidar data to backpack lidar data to reduce 

the influence of incorrectly segmented trees. To further evaluate 

the influence of individual tree segmentation accuracy on the 

registration accuracy, we simulated a scenario where the 

individual tree segmentation accuracy was 100% and randomly 

removed/added errors from/to the UAV lidar segmentation 

results in site 1 to manipulate the values of r and p from UAV 

individual tree segmentation results, which were changed from 

100% to 75% with a step of 5%. As can be seen in Fig. 10, with 

the decrease of r and p, the number of matched tree pairs also 

decreased. However, when r and p were both higher than 80%, 

there were enough matched tree pairs to perform the following 

coarse and fine registration steps. Currently, most individual 

tree segmentation practices from lidar can reach an overall 

accuracy higher than 85% [56], [57]. Therefore, we believe that 

the proposed framework can be used to register multi-platform 

lidar data effectively in most forest environments. 

 

 
Fig. 10.  The influence of individual tree segmentation accuracy on the TIN 

matching results. r and p represent the recall and precision, and each element in 

the matrix represents the number of matched tree pairs. Elements colored in red 
indicate that there are enough matched tree pairs for registration, and elements 

colored in green indicate that the number of matched tree pairs is insufficient 

for registration. 

 

There are five user-defined parameters in the algorithm, as 

listed in Table II. TS and TI are two iteratively updated 

parameters, which can be assigned with relatively small values 

(around 0.75) to ensure that the TIN matching process can find 

enough tree pairs. TVS is a VS threshold, which can be 

determined by a simple trial-and-error process. The number of 

matched tree pairs should be monitored in the trial-and-error 

process. The larger the TVS is, the fewer the number of matched 

tree pairs is. Since solving the rotation matrix and translation 

vector only requires three paired targets [58], [59], the 

registration process can be conducted once the trial-and-error 

process finds three matched tree pairs. However, the robustness 

of the transformation solution can be improved by introducing 

more referencing targets [58-60]. Therefore, we encourage 

users to continue the trial-and-error process with as many 

matched tree pairs (> 8 pairs) as possible. TN determines the 

number of iterations, which can be set to a relatively large 

number to eliminate the “one-to-many” phenomenon in the TIN 

matching process. In summary, the above four parameters can 

either be determined by a simple trial-and-error process or do 

not have a significant influence on the registration framework. 

The only parameter that cannot be easily obtained and might 

have a significant influence on the registration accuracy is NN. 

To assess the sensitivity of the proposed framework to NN, we 

iteratively increased NN and ran the registration processes for 

site 1 repeatedly. To eliminate the influence of individual tree 

segmentation error on the results, the registration processes 

were running under a simulated scenario where the individual 

tree segmentation accuracy was 100%. All other parameters 

were set the same as Table II. Since TVS was set to five and at 

least seven points were needed to build a TIN with five triangles, 

the number of matched tree pairs would be zero if NN ≤ 7. 

Therefore, NN was increased from 8 to 15 with a step size of 

one in this analysis. As can be seen in Fig. 11, with the increase 

of NN, the number of matched tree pairs first increased and then 

decreased, and the largest value appeared when NN was 11. The 

difference in the number of matched tree pairs was less than 10 

when NN was set between 10 and 12. Considering the 

redundant information provided by a large number of matched 

tree pairs for registration, it should be a safe choice to set NN as 

around twice the value of TVS. 
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Fig. 11.  The influence of the number of neighbors (NN) on the TIN matching 

results on site 1. 

 

Although the proposed framework shows great potential in 

solving the bottleneck of multi-platform lidar data registration 

in forest environments, it still has limitations which need to be 

addressed in future studies. Firstly, the proposed framework 

might not work well in regularly planted forests, because the 

regular arrangement of stems will likely result in very similar 

TINs built from different tree locations. Using exterior 

information to assist the proposed framework (such as 

referencing targets) might be a solution to this issue. Moreover, 

the present study only tested the proposed framework in very 

limited forest environments. Further studies are still needed to 

investigate how the framework performs in other more complex 

forest environments, such as deciduous forests. In dense 

deciduous forests, the tightly interlocked canopies might cause 

low accuracy of individual tree segmentation from UAV lidar 

data. Using areas around forest gaps with sparse tree 

distribution instead of the whole study area might be beneficial 

to increase the registration accuracy. 

V. CONCLUSIONS 

This study proposes an automatic point cloud registration 

framework for multi-platform lidar data fusion in forest 

environments. Based on the assumption that each forest stand 

has a unique spatial distribution of trees, the proposed 

framework identifies tree pairs from multi-platform lidar data 

by a TIN matching strategy. The identified tree pairs are then 

used to coarsely match the target point cloud to the source point 

cloud, and the final registration result could be obtained by 

running an ICP-based fine registration process. The proposed 

framework was tested to register backpack lidar data and UAV 

lidar data and register multi-scan TLS data. Overall, the 

proposed framework achieved satisfying accuracies in both 

experiments. The vertical error of the registration between 

backpack and UAV lidar data was less than 20 cm for both 

study sites, and horizontal error was less than 30 cm. The 

registration error was much lower for the fusion of multi-scan 

TLS data. The average registration error was about 4.7 cm. 

Individual tree segmentation errors can reduce the number of 

matched tree points. However, as long as the number of 

matched tree points was enough for solving the rotation matrix 

and translation vector, the increase of tree segmentation errors 

(<20%) did not have significant influence on the registration 

accuracy. Moreover, the proposed framework was not overly 

sensitive to the settings of user-defined parameters. All 

parameters can be easily calculated or obtained by a simple 

trial-and-error process. 

 

REFERENCES 

[1] H. Latifi, F. E. Fassnacht, J. Müller, A. Tharani, S. Dech, and M. 

Heurich, “Forest inventories by LiDAR data: A comparison of single 
tree segmentation and metric-based methods for inventories of a 

heterogeneous temperate forest,” Int. J. Appl. Earth Obs. 

Geoinformation, vol. 42, pp. 162–174, 2015. 
[2] M. Bouvier, S. Durrieu, R. A. Fournier, and J. P. Renaud, 

“Generalizing predictive models of forest inventory attributes using an 

area-based approach with airborne LiDAR data,” Remote Sens. 
Environ., vol. 156, pp. 322–334, 2015. 

[3] S. Saarela et al., “Model-assisted estimation of growing stock volume 

using different combinations of LiDAR and Landsat data as auxiliary 
information,” Remote Sens. Environ., vol. 158, pp. 431–440, 2015. 

[4] A. E. L. Stovall, A. G. Vorster, R. S. Anderson, P. H. Evangelista, and 

H. H. Shugart, “Non-destructive aboveground biomass estimation of 
coniferous trees using terrestrial LiDAR,” Remote Sens. Environ., vol. 

200, pp. 31–42, 2017. 

[5] F. Morsdorf, E. Meier, B. Kötz, K. I. Itten, M. Dobbertin, and B. 
Allgöwer, “LIDAR-based geometric reconstruction of boreal type 

forest stands at single tree level for forest and wildland fire 

management,” Remote Sens. Environ., vol. 92, no. 3, pp. 353–362, 
2004. 

[6] M. A. Wulder, C. W. Bater, N. C. Coops, T. Hilker, and J. C. White, 

“The role of LiDAR in sustainable forest management,” For. Chron., 
vol. 84, no. 6, pp. 807–826, 2008. 

[7] Q. Ma, T. Hu, Y. Su, Q. Guo, J. J. Battles, and M. Kelly, “Individual 

tree level forest fire assessment using bi-temporal LIDAR data,” in 
IGARSS 2018-2018 IEEE International Geoscience and Remote 

Sensing Symposium, 2018, pp. 4308–4311. 
[8] X. Liang, J. Hyyppä, A. Kukko, H. Kaartinen, A. Jaakkola, and X. Yu, 

“The use of a mobile laser scanning system for mapping large forest 

plots,” IEEE Geosci. Remote Sens. Lett., vol. 11, no. 9, pp. 1504–
1508, 2014. 

[9] X. Liang et al., “Terrestrial laser scanning in forest inventories,” Isprs 

J. Photogramm. Remote Sens., vol. 115, pp. 63–77, 2016. 

[10] L. Wallace, A. Lucieer, Z. Malenovskỳ, D. Turner, and P. Vopěnka, 

“Assessment of forest structure using two UAV techniques: A 

comparison of airborne laser scanning and structure from motion 
(SfM) point clouds,” Forests, vol. 7, no. 3, p. 62, 2016. 

[11] Y. Su, H. Guan, T. Hu, and Q. Guo, “The integration of uavand 

backpack lidar systems for forest inventory,” in IGARSS 2018-2018 
IEEE International Geoscience and Remote Sensing Symposium, 

2018, pp. 8757–8760. 

[12] C. Paris, D. Valduga, and L. Bruzzone, “A Hierarchical Approach to 
Three-Dimensional Segmentation of LiDAR Data at Single-Tree 

Level in a Multilayered Forest,” IEEE Trans. Geosci. Remote Sens., 

vol. 54, no. 7, pp. 4190–4203, 2016. 
[13] T. Hilker et al., “Comparison of terrestrial and airborne LiDAR in 

describing stand structure of a thinned lodgepole pine forest,” J. For., 

vol. 110, no. 2, pp. 97-104(8), 2012. 
[14] P. W. Theiler, J. D. Wegner, and K. Schindler, “Globally consistent 

registration of terrestrial laser scans via graph optimization,” Isprs J. 

Photogramm. Remote Sens., vol. 109, pp. 126–138, 2015. 
[15] L. Yan, J. Tan, H. Liu, H. Xie, and C. Chen, “Automatic registration 

of TLS-TLS and TLS-MLS point clouds using a genetic algorithm,” 

Sensors, vol. 17, no. 9, 2017. 
[16] L. Cheng et al., “Registration of Laser Scanning Point Clouds: A 

Review,” Sensors, vol. 18, no. 5, p. 1641, 2018. 

[17] Z. Dong, B. Yang, F. Liang, R. Huang, and S. Scherer, “Hierarchical 
registration of unordered TLS point clouds based on binary shape 

context descriptor,” Isprs J. Photogramm. Remote Sens., vol. 144, pp. 

61–79, 2018. 
[18] B. Morago, G. Bui, T. Le, N. H. Maerz, and Y. Duan, “Photograph 

lidar registration methodology for rock discontinuity measurement,” 

IEEE Geosci. Remote Sens. Lett., vol. PP, no. 99, pp. 1–5, 2018. 
[19] I. Klein and S. Filin, “Lidar and INS fusion in periods of GPS outages 

for mobile laser scanning mapping systems,” Isprs - Int. Arch. 

Photogramm. Remote Sens. Spat. Inf. Sci., vol. XXXVIII-5/W12, no. 
5, pp. 231–236, 2012. 



> TGRS-2019-00630.R2 < 

11 

 

11 

[20] L. Zhu and R. Shi, “Research on target accuracy for ground-based 

lidar,” in Laser Radar Technology and Applications XIV, 2009, vol. 
7323, p. 73230K. 

[21] H. Cho, S. Hong, S. Kim, H. Park, I. Park, and H. G. Sohn, 

“Application of a terrestrial LIDAR system for elevation mapping in 
Terra Nova Bay, Antarctica,” Sensors, vol. 15, no. 9, pp. 23514–

23535, 2015. 

[22] A. Wendt, “A concept for feature based data registration by 
simultaneous consideration of laser scanner data and photogrammetric 

images,” Isprs J. Photogramm. Remote Sens., vol. 62, no. 2, pp. 122–

134, 2007. 
[23] B. O. Abayowa, A. Yilmaz, and R. C. Hardie, “Automatic registration 

of optical aerial imagery to a LiDAR point cloud for generation of city 

models,” Isprs J. Photogramm. Remote Sens., vol. 106, pp. 68–81, 
2015. 

[24] L. Cheng et al., “A symmetry-based method for Lidar point 

registration,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 
11, no. 1, pp. 285–299, 2018. 

[25] S. Rusinkiewicz and M. Levoy, “Efficient Variants of the ICP 

Algorithm,” Proc. 3DIM, pp. 145–152, 2001. 
[26] A. Gressin, C. Mallet, J. Demantké, and N. David, “Towards 3D lidar 

point cloud registration improvement using optimal neighborhood 

knowledge,” Isprs J. Photogramm. Remote Sens., vol. 79, no. I–3, pp. 
240–251, 2013. 

[27] A. R. G. Large, G. L. Heritage, and M. E. Charlton, Laser Scanning: 

The Future. Wiley‐Blackwell, 2009. 
[28] K. E. Anderson et al., “Estimating vegetation biomass and cover 

across large plots in shrub and grass dominated drylands using 
terrestrial lidar and machine learning,” Ecol. Indic., vol. 84, pp. 793–

802, 2018. 

[29] C. Brenner, C. Dold, and N. Ripperda, “Coarse orientation of 
terrestrial laser scans in urban environments,” Isprs J. Photogramm. 

Remote Sens., vol. 63, no. 1, pp. 4–18, 2008. 

[30] Jen, JerJaw and Tzu, YiChuang, “Registration of ground‐based 
LiDAR point clouds by means of 3D line features,” J. Chin. Inst. 

Eng., vol. 31, no. 6, pp. 1031–1045, 2008. 

[31] A. Gruen and D. Akca, “Least squares 3D surface and curve 
matching,” Isprs J. Photogramm. Remote Sens., vol. 59, no. 3, pp. 

151–174, 2005. 

[32] X. Ge and T. Wunderlich, “Surface-based matching of 3D point 
clouds with variable coordinates in source and target system,” Isprs J. 

Photogramm. Remote Sens., vol. 111, pp. 1–12, 2016. 

[33] J. G. Henning and P. J. Radtke, “Multiview range-image registration 
for forested scenes using explicitly-matched tie points estimated from 

natural surfaces,” Isprs J. Photogramm. Remote Sens., vol. 63, no. 1, 

pp. 68–83, 2008.  
[34] J. Liu et al., “Automated matching of multiple terrestrial laser scans 

for stem mapping without the use of artificial references,” Int. J. Appl. 

Earth Obs. Geoinformation, vol. 56, pp. 13–23, 2017. 
[35] D. Kelbe, J. van Aardt, P. Romanczyk, M. van Leeuwen, and K. 

Cawse-Nicholson, “Marker-gree registration of forest terrestrial laser 

scanner data pairs with embedded confidence metrics,” IEEE Trans. 
Geosci. Remote Sens., vol. 54, no. 7, pp. 4314–4330, Jul. 2016. 

[36] P. Polewski, W. Yao, L. Cao, and S. Gao, “Marker-free coregistration 

of UAV and backpack LiDAR point clouds in forested areas,” Isprs J. 
Photogramm. Remote Sens., vol. 147, pp. 307–318, Jan. 2019. 

[37] J. Mustonen, P. Packalén, and A. Kangas, “Automatic segmentation of 

forest stands using a canopy height model and aerial photography,” 
Scand. J. For. Res., vol. 23, no. 6, pp. 534–545, 2008. 

[38] L. Jing, B. Hu, J. Li, and T. Noland, “Automated delineation of 

individual tree crowns from lidar data by multi-scale analysis and 
segmentation,” Photogramm. Eng. Remote Sens., vol. 78, no. 12, pp. 

1275–1284, 2012. 

[39] A. Khosravipour, A. K. Skidmore, M. Isenburg, T. Wang, and Y. A. 
Hussin, “Generating pit-free canopy height models from airborne 

Lidar,” Photogramm. Eng. Remote Sens., vol. 80, no. 9, pp. 863–872, 

2014. 
[40] W. Li, Q. Guo, M. K. Jakubowski, and M. Kelly, “A new method for 

segmenting individual trees from the lidar point cloud,” Photogramm. 

Eng. Remote Sens., vol. 78, no. 1, pp. 75–84, 2012. 
[41] X. Lu, Q. Guo, W. Li, and J. Flanagan, “A bottom-up approach to 

segment individual deciduous trees using leaf-off lidar point cloud 

data,” Isprs J. Photogramm. Remote Sens., vol. 94, pp. 1–12, 2014. 

[42] S. Tao et al., “Segmenting tree crowns from terrestrial and mobile 

LiDAR data by exploring ecological theories,” Isprs J. Photogramm. 
Remote Sens., vol. 110, pp. 66–76, 2015. 

[43] M. K. Jakubowski, W. Li, Q. Guo, and M. Kelly, “Delineating 

individual trees from LiDAR data: A comparison of vector-and raster-
based segmentation approaches,” Remote Sens., vol. 5, no. 9, pp. 

4163–4186, 2013. 

[44] Victorj. D. Tsai, “Delaunay triangulations in TIN creation: an 
overview and a linear-time algorithm,” Int. J. Geogr. Inf. Syst., vol. 7, 

no. 6, pp. 501–524, 1993. 

[45] D. Zhou, G. Li, and Y. Liu, “Effective corner matching based on 
Delaunay triangulation,” in IEEE International Conference on 

Robotics and Automation, 2004. Proceedings. ICRA’04. 2004, 2004, 

vol. 3, pp. 2730–2733. 
[46] O. Chum, J. Matas, and J. Kittler, “Locally Optimized RANSAC,” 

Lect. Notes Comput. Sci., vol. 2781, pp. 236–243, 2003. 

[47] T. Fei, X. H. Liang, Z. Y. He, and G. L. Hua, “A registration method 
based on nature feature with klt tracking algorithm for wearable 

computers,” in International Conference on Cyberworlds, 2009. 

[48] N. Li, P. Cheng, M. A. Sutton, and S. R. Mcneill, “Three-dimensional 
point cloud registration by matching surface features with relaxation 

labeling method,” Exp. Mech., vol. 45, no. 1, pp. 71–82, 2005. 

[49] G. C. Sharp, W. L. Sang, and D. K. Wehe, “ICP registration using 
invariant features,” IEEE Trans Pami, vol. 24, no. 1, pp. 90–102, 

2002. 

[50] X. Zhao, Q. Guo, Y. Su, and B. Xue, “Improved progressive TIN 
densification filtering algorithm for airborne LiDAR data in forested 

areas,” Isprs J. Photogramm. Remote Sens., vol. 117, pp. 79–91, 2016. 
[51] M. Hämmerle et al., “Simulating various terrestrial and uav lidar 

scanning configurations for understory forest structure modelling,” 

Isprs Annals of Photogrammetry, Remote Sensing & Spatial 
Information Sciences, vol. 4, 2017. 

[52] W. Zhang, Y. Chen, H. Wang, M. Chen, X. Wang, and G. Yan, 

“Efficient registration of terrestrial LiDAR scans using a coarse-to-
fine strategy for forestry applications,” Agric. For. Meteorol., vol. 

225, pp. 8–23, 2016. 

[53] R. A. Chisholm, J. Cui, S. K. Lum, and B. M. Chen, “UAV LiDAR 
for below-canopy forest surveys,” J. Unmanned Veh. Syst., vol. 1, no. 

01, pp. 61–68, 2013.  

[54] Y.-J. Lee and J.-B. Song, “Three-dimensional iterative closest point-
based outdoor SLAM using terrain classification,” Intell. Serv. Robot., 

vol. 4, no. 2, pp. 147–158, 2011.  

[55] Y.-J. Lee, Y.-H. Ji, J.-B. Song, and S.-H. Joo, “Performance 
improvement of ICP-based outdoor SLAM using terrain 

classification,” in international conference on advanced 

mechatronics: toward evolutionary fusion of IT and mechatronics: 
ICAM., 2010, pp. 243–246. 

[56] G. PriedīTis, I. Šmits, S. DaģIs, D. Dubrovskis, S. Treija, and I. Skuja, 

“Individual tree identification using combined LiDAR data and optical 
imagery.,” in International Scientific Conference Proceedings, 

“research for Rural Development”, Jelgava, Latvia, 16-18 May, 

2012. 
[57] E. Ayrey et al., “Layer Stacking: A Novel Algorithm for Individual 

Forest Tree Segmentation from LiDAR Point Clouds,” Can. J. Remote 

Sens., vol. 43, no. 1, pp. 16–27, 2017.  
[58] L. Quan, “Self-calibration of an affine camera from multiple views,” 

Int. J. Comput. Vis., vol. 19, no. 1, pp. 93–105, 1996.  

[59] C.-P. Lu, G. D. Hager, and E. Mjolsness, “Fast and globally 
convergent pose estimation from video images,” IEEE Trans. Pattern 

Anal. Mach. Intell., vol. 22, no. 6, pp. 610–622, 2000.  

[60] R. I. Hartley, “In defence of the 8-point algorithm,” in Proceedings of 
IEEE international conference on computer vision, 1995, pp. 1064–

1070. 

 

 

 

 

 

 

 

 

 



> TGRS-2019-00630.R2 < 

12 

 

12 

Hongcan Guan received a B.S. degree in remote 

sensing science and technology from Wuhan 
University, Wuhan, China, in 2014, and a M.S. 

degree in electronics and communication 

engineering from the Institute of Opto-electronics, 
Chinese Academy of Sciences, Beijing, China, in 

2017. 

He is a Ph.D. student in the Institute of Botany, 
Chinese Academy of Sciences, Beijing. His research 

focuses on using remote sensing technology to solve 

vegetation mapping related challenges. 
 

Yanjun Su received a B.E. degree in surveying and 

mapping engineering from China University of 
Geosciences, Beijing, China, in 2009, a M.S. degree 

in geographic information science from the institute 

of Geographic Sciences and Natural Resources 
Research, Chinese Academy of Sciences, Beijing, 

in 2012, and a Ph.D. degree in environmental 

systems from the University of California at 
Merced, Merced, CA, USA, in 2017. 

He is an associate professor in the Institute of 

Botany, Chinese Academy of Sciences, Beijing. His 
research focuses on applying geographic information science and remote 

sensing to understand the influence of anthropogenic activities and global 

climate change on terrestrial ecosystems, with a particular emphasis on the 
terrestrial carbon cycle, terrestrial biodiversity, energy balance and land-

use/land-cover change. 
 

Tianyu Hu received a B.S. degree in ecology from 

China Agriculture University, Beijing, China, in 
2008, and a Ph.D. degree in Institute of Botany, 

Chinese Academy of Sciences, Beijing, in 2014. 

He is an assistant professor in the Institute of 
Botany, Chinese Academy of Sciences, Beijing. His 

research focuses on using LiDAR technology and 

dynamic vegetation model to understand forest 
ecosystem, especially in forest structure, function 

and biodiversity.  

 
Rui Wang received a B.S. degree in forestry from 

Huazhong Agricultural University, Wuhan, China, 

in 2016. 
She is a master student in the Institute of Botany, 

Chinese Academy of Sciences, Beijing, China. Her 

research focuses on exploring the application of 
lidar technology in forest inventory. 

 

 
 

 

Qin Ma received a B.S. degree in forestry from 
Huazhong Agricultural University, Wuhan, China, in 

2017.  

She is a Ph.D. student in the Institute of Botany, 
Chinese Academy of Sciences, Beijing, China. Her 

research focuses on using LiDAR technology to 

assess biodiversity. 
 

 

 
 

Qiuli Yang received a B.S. degree in geographic 

information system from Xinjiang Agricultural 
University and a M.S. degree in geography from 

Xinjiang University, Xinjiang, China, in 2014 and 

2018, respectively.  
She is a Ph.D. student in the Institute of Botany, 

Chinese Academy of Sciences, Beijing, China. Her 

research focuses on using multi-source remote 
sensing data to derive forest structural parameters 

and functional parameters. 

 
 

 

Xiliang Sun received a B.S. degree in remote 

sensing from the Information Engineering 
University, Zhengzhou, China, in 2010, and a M.S. 

degree in photogrammetry and remote sensing from 

Shandong University of Science and Technology, 
Qingdao, China, in 2013.  

He is an engineer in the Institute of Botany, Chinese 

Academy of Sciences, Beijing, China. His recent 
research areas include LiDAR algorithm 

development and its applications in city ecology, 

such as point clouds segmentation, city green 
biomass extraction and 3-D modeling. 

 

Yumei Li received the B.S. degree in ecology from 
Hebei Agricultural University, Baoding, China, in 

2012, and the Ph.D. degree from the Institute of 

Botany, Chinese Academy of Sciences, Beijing, 
China, in 2018.  

She is currently a post-doctor in the Institute of 

Botany, Chinese Academy of Sciences, Beijing. 
Her current research interests include the studies on 

retrieval method of structural and biophysical 

parameters of vegetation using light detection and 
ranging (LiDAR) data and using remote sensing 

technology to answer key scientific issues on ecological science. 

 
Shichao Jin received a B.S. degree in forestry from 

Huazhong Agricultural University, Wuhan, China, 
in 2016.  

He is a Ph.D. student in the Institute of Botany, 

Chinese Academy of Sciences, Beijing, China. His 
research focuses on using deep learning and LiDAR 

technology to solve phenotyping related challenges. 

 
 

 

 
Zhang Jing received a B.S. degree in landscape 

architecture from Sichuan University.  

She is a master student in the Institute of Botany, 
Chinese Academy of Sciences, Beijing. Her 

research focuses on exploring the application of 

lidar technology in urban planning. 
 

 

 
 

 

Qin Ma received a B.S. degree in geography from 
Nanjing University, Nanjing, China in 2011; a M.S. 

degree in geography from Western University, 

Ontario, Canada in 2013, and a Ph.D. degree in 
environmental Systems from the University of 

California, Merced, USA in 2018. 

She is an assistant professor in the Department of 
Forestry, Mississippi State University. Her research 

focuses on using remote sensing and spatial 

techniques to map, monitor, and model vegetation 
structural and functional changes in response to 

human activities and climate change.  

 
Min Liu received a B.S. degree in agronomy from 

Henan Agricultural University, in 1994, and a M.S. 

degree in science of public management and a Ph.D. 
degree in agricultural economics from Renmin 

University, Beijing, China, in 2002 and 2009, 

respectively.  
He is a senior researcher in Forestry and Economics 

and Development Research Center of National 

Forestry and Grassland Administration, Beijing. His 
recent research areas focus on natural resources and 

environmental economics, green economy and 

sustainable development. 



> TGRS-2019-00630.R2 < 

13 

 

13 

Fayun Wu received a B.S. degree in soil and water 

conservation from Beijing Forestry University, 
Beijing, China, in 1998, and a M.S. degree in forest 

management from Beijing Forestry University in 

2002, Beijing. 
He is a senior engineer in Academy of Inventory and 

Planning of National Forestry and Grassland 

Administration, Beijing. His recent research areas 
focus on remote sensing applications in forestry. 

 

 
Qinghua Guo received a B.S. degree in 

environmental science and a M.S. degree in remote 

sensing and geographic information system (GIS) 
from Peking University, Beijing, China, in 1996 and 

1999, respectively, and received a Ph.D. degree in 

environmental science from the University of 
California, Berkeley, CA, USA, in 2005. 

He is a professor in the Institute of Botany, Chinese 

Academy of Sciences, Beijing. He is also an adjunct 
professor and a member of the founding faculty in 

the School of Engineering, University of California 

at Merced, Merced, CA, USA. His recent research areas include GIS and 
remote sensing algorithm development and their environmental applications, 

such as object-based image analysis, geographic one-class data analysis, and 

LiDAR data processing. 
 


