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Abstract

A central aim of this microbial ecology research was to investigate the mechanisms

shaping the assembly of soil microbial communities. Despite the importance of bac-

terial and fungal mediation of carbon cycling in forest ecosystems, knowledge con-

cerning their distribution patterns and underlying mechanisms remains insufficient.

Here, soils were sampled from six bamboo forests across the main planting area of

Moso bamboo in southern China. The bacterial and fungal diversities were assessed

by sequencing 16S rRNA and ITS gene amplicons, respectively, with an Illumina

MiSeq. Based on structural equation modelling, dispersal limitation had strongest

impact on bacterial beta diversity, while the mean annual precipitation had a smaller

impact by directly or indirectly mediating the soil organic carbon density. However,

only the mean annual temperature and precipitation played direct roles in fungal

beta diversity. Moreover, the co-occurrence network analyses revealed a possibly

much higher network connectivity in the fungal network than in the bacteria. With

less dispersal limitation, stronger environmental selection and a potentially more

connected network, the fungal community had more important roles in the soil car-

bon metabolisms in bamboo forests. Fungal beta diversity and the clustering coeffi-

cient explained approximately 14.4% and 6.1% of the variation in the carbon

metabolic profiles among sites, respectively, but that of bacteria only explained

approximately 1.7% and 1.8%, respectively. This study explored soil microbial spatial

patterns along with the underlying mechanisms of dispersal limitation, selection and

connectivity of ecological networks, thus providing novel insights into the study of

the distinct functional traits of different microbial taxa.
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1 | INTRODUCTION

Among the main ecological processes that underlie the assembly of

communities, dispersal and selection are two principle forces,

although drift and diversification also play important roles. According

to Vellend’s conceptual synthesis of community ecology (Vellend,

2010), dispersal refers to the movement of organisms across space;

selection represents the changes in community structure caused by

deterministic fitness differences between taxa; drift reflects stochas-

tic changes in the relative abundances of different taxa; diversifica-

tion produces new genetic variation. There is increasing awareness

that all of these processes operate in combination to assemble the
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community; however, their relative importance varies across differ-

ent spatial scales (Martiny, Eisen, Penn, Allisona, & Horner-Devine,

2011; Wang et al., 2015) and habitat types (Wang et al., 2013,

2017). Recently, evidence has shown that the relative importance of

the individual drivers of microbial community assembly also varies

between different taxa (Brown & Jumpponen, 2014). On the one

hand, dispersal ability can vary among microbial taxa due to deter-

ministic traits, such as morphological features and habitat specificity

(Hanson, Fuhrman, Horner-Devine, & Martiny, 2012). A modelling

study indicated a very low probability of passive dispersal for

microbes >20 lm in diameter between continents (Wilkinson,

Koumoutsaris, Mitchell, & Bey, 2012). On the other hand, different

ranges of physiologies of taxonomic groups also resulted in differ-

ences between the strength of selection (Schmidt, Nemergut, Darcy,

& Lynch, 2014). A recent publication has suggested that the commu-

nity of bacteria and fungi follow contrasting assembly trajectories

along a chronosequence in retreating glacier soils, and a greater frac-

tion of fungal operational taxonomic units (OTUs) displayed nonran-

dom patterns of occurrence compared with bacterial OTUs (Brown

& Jumpponen, 2014). Ma et al. (2017) also revealed that soil bacteria

and fungi had different biogeographic patterns and environmental fil-

ters along continental scales, implying their different community

assembly mechanisms and ecological functions. Although distinct

assembly trajectories were highlighted for soil bacteria and fungi, the

underlying ecological processes and their relative importance remain

major challenges.

A distance decay relationship (the community similarity declines

with increasing geographic distance) can be used to evaluate the

importance of these ecological processes because selection and dis-

persal could significantly affect this pattern. Although many studies

have reported the spatial patterns of bacterial and fungal communi-

ties under similar environmental conditions, less attention has been

paid to their dispersal potential. Some studies have asserted that

free-living microorganisms, all of which have body sizes less than

approximately 1 mm, do not experience passive dispersal limitations

(Fenchel & Finlay, 2004; Finlay, 2002). However, Schmidt et al.

(2014) speculated that bacteria are less likely to be dispersal limited

than fungi due their body size differences. Thus, the dispersal capa-

bilities of different taxa remain poorly understood. Distance decay

relationships can also result from environmental differences through

selection. Abiotic factors, such as soil properties (Zinger et al., 2011),

climate (Martiny et al., 2011) and land use (Jesus, Marsh, Tiedje, &

Moreira, 2009), are well-described environmental factors that deter-

mine bacterial and fungal assemblage. Additionally, recent surveys in

forests also revealed that plant identity, such as plant species com-

position, is of great importance in predicting soil bacterial and fungal

communities, mainly through the effects of plants on the food sup-

ply, physical microhabitats and environmental conditions (Prober

et al., 2015).

Compared to abiotic factors, much less is known about how bio-

tic interactions shape microbial communities. Interactions among

microorganisms, both within and among groups, cause complexity in

community structure through symbioses, parasitism, competition or

predation (Schmitt et al., 2012; Steele et al., 2011). Network analy-

sis-based approaches have been increasingly used to explore poten-

tial biotic interactions, including uncultured microorganisms in

different systems (Eiler, Heinrich, & Bertilsson, 2012; de Menezes

et al., 2015). The topological properties of the network (e.g., com-

plexity and modularity) likely indicate the stability of the community

or its functional diversity (Coux, Rader, Bartomeus, & Tylianakis,

2016; Dickie, Cooper, Bufford, Hulme, & Bates, 2017). However,

very few attempts have been made to link co-occurrence network

patterns with the variation in community structure or function at

large spatial scales (Barberan, Bates, Casamayor, & Fierer, 2012; Dur-

rer et al., 2017). Thus, with a variety of abiotic factors and compli-

cated biotic interactions, similar environmental conditions across

broad spatial scales can be a valuable material for studying the dif-

ferent ecological processes that shape community assembly and the

difference in dispersal potential among taxonomic groups, such as

bacteria and fungi.

The extensively planted bamboo forests in southern China with a

large area provide a good resource to study the soil microbial assem-

blage at regional scales. With an aggressive rhizome system and

fast-growing shoots, bamboo forests are noted for their essential

role as carbon sinks in China, storing approximately 611.2 TgC in

total, with 75% of that in the soil (Li et al., 2015). Bacteria and fungi

are involved in a variety of processes that influence soil carbon

sequestration in terrestrial ecosystems, such as the degradation and

transformation of organic material (Falkowski, Fenchel, & Delong,

2008). Fungi are especially important in the decomposition of recal-

citrant soil carbon (Courty et al., 2010), and bacteria are the primary

decomposers of simple carbohydrates, organic acids and amino acids

(Myers, Zak, White, & Peacock, 2001). A previous study showed that

bamboo invasion shifted the community structure from a bacteria-

dominated to a fungal-dominated microbial community, resulting in a

functional change that caused more decomposition of the refractory

lignin of the bamboo litter in soils (Chang & Chiu, 2015). This result

indicated the ecological function of fungal communities in bamboo

ecosystems are potentially more important compared to bacteria. In

addition, there is increasing awareness that the spatial patterning of

soil microbes may have important aboveground consequences, such

as in plant community structure and ecosystem functioning (Ettema

& Wardle, 2002; Green et al., 2004). Thus, more knowledge about

soil microbial distribution patterns and the underlying mechanisms is

required for the current understanding and future predictions of

bamboo forest ecosystem functioning.

Here, we tested two hypotheses: (i) soil free-living bacteria and

fungi may experience similar dispersal limitation and (ii) bacterial and

fungal communities have similar dispersal limitations, but their spatial

and co-occurrence patterns—and associated function—may respond

to different environmental filters. To address these hypotheses, we

used next-generation sequencing technology to analyse 18 soil sam-

ples from six representative pure bamboo forests in southern China

across temperature and precipitation gradients. The soil samples

belong to Ferric Acrisols in the FAO classification system which

derived from Quaternary red clay and have similar edaphic
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properties. We analysed the direct and indirect relationships

between environmental factors, microbial spatial patterns, network

property and carbon metabolic profiles to reveal the effects of abi-

otic and biotic factors on soil microbial community assemblies and

carbon metabolisms at the regional scale. Our results indicate a dis-

tance decay pattern for the bacterial community, which is mainly

controlled by dispersal limitation, but no significant pattern for the

fungal community, which is driven by the mean annual temperature

and precipitation. Moreover, the fungal network has a potentially

much higher connectivity than the bacterial network. These ecologi-

cal features of the bacterial and fungal communities might conse-

quently affect carbon metabolism in the bamboo forest soils.

2 | MATERIALS AND METHODS

2.1 | Sampling and site characteristics

The study area is located in southern China between 113°10 and

118°180E latitude and 25°400 and 30°190N longitude and is the pre-

dominant cultivation area of Moso bamboo (Phyllostachys pubescens

Mazel ex Houz.) in China. The climate in the region is classified as

Cfa (humid subtropical climate) based on K€oppen’s classification. The

mean annual temperature (MAT) in the region ranges from 16.4 to

19.3°C, and the mean annual precipitation (MAP) ranges from 1452

to 1930 mm (Table S1).

To determine the effects of geographic and environmental dis-

tance on the soil bacterial and fungal beta diversities in bamboo for-

ests, six Moso bamboo forests were selected from different sites,

including Lin’an (LA), Quzhou (QZ), Jian’ou (JO), Changting (CT), Zixi

(ZX) and Hengyang (HY) in southern China (Figure 1a). The geographic

distance ranges from 141 to 767 km. It is notable that there is no

other tree species in these bamboo forests, only with some ferns and

few dwarf shrubs. The stand density of the bamboo forests ranged

between 3,367 and 3,989 stems/ha, with a mean bamboo stem

diameter of 10–11 cm. All six bamboo forests were extensively man-

aged in a similar way, without fertilization. The soil of the study area

is classified as Ultisol according to the United States Department of

Agriculture (USDA) soil taxonomy. A central sampling plot was estab-

lished in the middle of each stand wherever possible to exclude the

edge effects. Vertically along the slope, a second plot was set at a

76 m distance from the central plot, and a third one was set horizon-

tally along the contour at a distance of 36 m from the central plot, as

shown in Figure 1b. At each plot, 10 soil cores (5 cm diameter) from

the upper 10 cm of the soil were collected in a circle of 1 m diameter

and combined into a single bulk sample. The litter layer was not

included in the soil sampling. All bulk samples were placed in a sterile

plastic bag and divided into two subsamples within 48 hr. One sub-

sample was kept at 4°C for measuring soil properties, and the other

was stored at �80°C for microbial community analysis. All soil sam-

pling was performed in April 2013.

Soil pH was determined with a glass electrode at a 2.5:1 water:-

soil ratio. Soil organic carbon (SOC) density was calculated by sum-

ming the product of the soil organic carbon content and the soil

bulk density in four layers of the soil profile (0–10, 10–20, 20–40

and 40–60 cm) (Chen, Zhang, Zhang, Booth, & He, 2009). The results

were reported by Ji, Zhuang, Zhang, Sun, and Gui (2013). The soil

pH ranged from 4.0 to 4.4, and the SOC densities ranged from 85.1

to 114.2 tC per hm2 among sites (Table S1).

2.2 | DNA extraction and PCR amplification

Soil DNA was extracted from 0.6 g of well-mixed soil for each sam-

ple using the FastDNA Spin Kit for Soil (MP Biomedicals, Santa Ana,

CA, USA) according to the manufacturer’s instructions. The extracted

DNA quality was determined using a NanoDrop 2000 (Thermo

Fisher Scientific, Wilmington, DE, USA) according to the 260/

280 nm and 260/230 nm absorbance ratios. All DNA was stored at

�80°C.

F IGURE 1 Sampling map showing six
bamboo forest sites in southern China (a)
and the sampling strategy at each site (b)
[Colour figure can be viewed at
wileyonlinelibrary.com]
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For bacterial analyses, the V3–V4 region of the 16S rRNA gene

was amplified using the 338F (ACTCCTACGGGAGGCAGCA) and

806R (GGACTACHVGGGTWTCTAAT) primer pair (Lee, Barbier, Bot-

tos, McDonald, & Cary, 2012). For fungal analyses, internal tran-

scribed spacer 1 (ITS1) region of the ribosomal RNA gene was

amplified with primers ITS1-1737F (GGAAGTAAAAGTCGTAA

CAAGG) and ITS2-2043R (GCTGCGTTCTTCATCGATGC) (Degnan &

Ochman, 2012). Both forward and reverse primers were tagged with

adapter, pad and linker sequencing. A unique barcode was added to

the reverse primer to permit the multiplexing of samples. The PCR

amplification was performed using an ABI GeneAmp� 9700 (ABI,

Foster City, CA, USA) with a 20 ll reaction system containing 4 ll

of 59 FastPfu Buffer, 0.8 ll of each primer (5 lM), 2 ll of 2.5 mM

dNTPs, 10 ng template DNA and 0.4 ll FastPfu Polymerase. The

PCR protocol for bacteria consisted of an initial predenaturation step

at 95°C for 3 min, 28 cycles of 30 s at 94°C, 30 s at 55°C and 45 s

at 72°C, and a final 10-min extension at 72°C. The PCR protocol for

fungi consisted of an initial predenaturation step at 95°C for 3 min,

35 cycles of 30 s at 95°C, 30 s at 59.3°C and 45 s at 72°C, and a

final 10 min extension at 72°C. Three PCRs were conducted for

each sample, and they were combined together after the PCR ampli-

fication. The PCR products were subjected to electrophoresis using

2.0% agarose gel. The band of the correct size was excised and puri-

fied using an AxyPrep DNA Gel Extraction Kit (Axygen Scientific,

Union City, CA, USA) and quantified with QuantiFluorTM-ST (Pro-

mega, Madison, WI, USA). All samples were pooled together with an

equal molar amount from each sample for MiSeq sequencing.

2.3 | MiSeq sequencing and sequence analysis

MiSeq sequencing was carried out on an Illumina MiSeq (PE250)

platform (Illumina, San Diego, CA, USA) by Shanghai Majorbio Bio-

Pharm Biotechnology Co., Ltd. (Shanghai, China). The samples were

prepared for sequencing using a TruSeq DNA kit according to the

manufacturer’s instructions. The purified mixture was diluted, dena-

tured, rediluted, mixed with PhiX (equal to 30% of the final DNA

amount) and then submitted to an Illumina Miseq system for

sequencing with the Reagent Kit v2 2 9 250 bp as described in the

manufacturer’s manual.

After sequencing, raw sequences were selected based on

sequence length, quality, primer and tag using the Trimmomatic

and FLASH program. We eliminated low-quality sequences using the

following criteria: (i) raw reads were shorter than 150 nucleotides,

(ii) reads were truncated at any site receiving an average quality

score <20 over a 50-bp sliding window, discarding the truncated

reads that were shorter than 50 bp, (iii) exact barcode matching,

two nucleotide mismatch in primer matching, reads containing

ambiguous characters were removed and (iv) only sequences that

overlap longer than 10 bp were assembled according to their over-

lap sequence. Reads that could not be assembled were discarded.

The clean sequences were then subjected to chimera detection

using the Uchime algorithm (Edgar, Haas, Clemente, Quince, &

Knight, 2011). Operational taxonomic units (OTUs) were classified

at the 97% similarity level using USEARCH (version 7.1), and the tax-

onomic assignment of OTUs was performed by the Ribosomal

Database Project classifier (Wang, Garrity, Tiedje, & Cole, 2007)

with a minimal 70% confidence score. For the 16S data, the taxo-

nomic assignment was performed using the SILVA RELEASE 119 data-

base (Quast et al., 2013); for the ITS, the UNITE version 6.0

database (Koljalg et al., 2013) was used. There was a very small

portion of archaeal sequences obtained (accounting for 0.46%–

8.9%), and we removed them as described by Zhang, Shao, and Ye

(2012). To minimize the impact of read count variation from differ-

ent samples, we rarefied all samples based on the smallest

sequence numbers (18,159 sequences for bacteria and 9,166 for

fungi per sample).

2.4 | Microbial carbon metabolic profiles

Carbon metabolic profiles of the soil microbial community were mea-

sured with BIOLOG 96-well Eco-Microplates (Biolog Inc., USA), with

31 different carbon sources and three replicates in each microplate.

The carbon sources include carbohydrates, carboxylic acids, poly-

mers, amino acids, amines and phenolic acid. Soil microorganisms

were extracted as follows: 5 g soil (dry weight equivalent) was added

to 45 ml sterile 0.85% (w/v) saline solution (Zak, Willig, Moorhead,

& Wildman, 1994). The mixture was shaken for 30 min at 90 rpm

and then left to stand for 30 min. Then, 1 ml supernatant was

diluted to 20 ml with sterile saline solution. Soil suspensions (150 ll)

were dispensed into each of the 96 wells, and the plates were then

incubated at 25°C in the dark for 7 days. Colour development (re-

flecting carbon utilization) in the wells was followed by absorbance

measurements at 590 nm every 12 hr. For the posterior analysis,

absorbance at a single time point (108 hr) was used, when the

asymptote was reached.

2.5 | Data analysis

Alpha diversity, the OTU richness and Shannon diversity of both

bacterial and fungal communities were calculated for each individual

sample. Beta diversity (community similarity, Scom) was estimated

based on both bacterial and fungal OTU tables using the Bray–Curtis

index, resulting in 135 data points among the sites (pairwise sample

comparisons). We also visualized the bacterial and fungal community

assemblages at different sites using nonmetric multidimensional scal-

ing (NMDS) (Fig. S1c-d) and estimated by a permutation analysis of

variance (PERMANOVA). We used the normalized optical density data

obtained from the Eco-Microplates to analyse the microbial meta-

bolic profiles. The similarity matrices were built using the Bray–Cur-

tis index. All these analyses were conducted in R 3.2.1 (https://www.

r-project.org/) with the VEGAN package (Dixon, 2003).

To estimate the slope of the distance decay relationship, a linear

regression of the ln-transformed data of community similarity was

plotted against the geographic distance according to Nekola andWhite

(Nekola & White, 1999) as follows: ln Scomð Þ ¼ constant� b� ln Dð Þ,
where Scom is the community similarity, D is the geographic distance
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and b is the slope of distance decay relationship. The significance of

the distance decay slope was tested with 1000 Monte Carlo permuta-

tions of the residuals under the full regression model.

To investigate the relationship between microbial beta diversity

and environmental distance (pairwise sample comparisons), we first

applied a Pearson correlation analysis in SPSS 20.0 (SPSS, Inc., Chi-

cago, IL). The environmental factors included geographic distance,

soil properties (i.e., pH and SOC density) and climatic factors (i.e.,

MAT and MAP). To include the nonlinear relationships and multivari-

ate interactions, we conducted a random forest classification analysis

to estimate the important predictors to both bacterial and fungal

beta diversities among the following variables: geographic distance,

soil pH, SOC density, MAT and MAP. Random forest is a new classi-

fication and regression approach that modifies standard classification

and regression tree methods using bootstrap samples of the training

data and random feature selection in tree selection (Liaw & Wiener,

2002). The random forest analysis evaluated the importance of each

predictor by looking at how much the mean square error (MSE)

increased when the data for that predictor was permuted randomly

while others remain unchanged. We conducted these analyses with

the RANDOMFOREST package (Liaw & Wiener, 2002) for R, and we also

assessed the significance of both the model and each predictor with

the RFUTILITIES (Evans & Murphy, 2016) and RFPERMUTE (Archer, 2016)

packages, respectively. We also evaluated the importance of all envi-

ronmental factors and microbial beta diversity in the soil carbon

metabolic profiles with a random forest analysis following the same

protocols.

We used structural equation modelling (SEM) (Grace, 2006) to

evaluate the direct and indirect relationships between geographic

distance, environmental factors (significantly indices based on Ran-

dom forest analysis), microbial beta diversity, network properties and

the carbon metabolic profile. An a priori model was usually con-

structed based on a literature review, and our knowledge of how

these predictors are related (Fig. S3). Data manipulation was required

before modelling. We examined the distributions of all of our

endogenous variables and tested their normality. Non-normally dis-

tributed data were ln-transformed to improve normality. After the

data manipulation, we parameterized our model using our data set

and tested its overall goodness of fit. Here, we used the chi-square

test (the model has a good fit when p > .05), the goodness of fit

index (GFI; the model has a good fit when GFI >0.9) and the root

mean square error of approximation (RMSEA; the model has a good

fit when RMSEA <0.05 and p > .05) (Schermelleh-Engel & Moos-

brugger, 2003). As some of the introduced variables were not nor-

mally distributed even after the transformations, we confirmed the

fit of the model with the Bollen–Stine bootstrap test (the model has

a good fit when the bootstrap p > .10). The a priori model attained

acceptable fit for both bacterial and fungal models, and thus no post

hoc alterations were conducted. With reasonable model fit, we inter-

preted the path coefficients of the models and the associated p-

values. Additionally, we calculated the standardized total effects (by

summing all direct and indirect pathways between the two variables)

of geographic distance, MAT, MAP and SOC density on microbial

beta diversity. All the SEM analyses were conducted using IBM
�

SPSS
�

AMOS 20.0 (AMOS IBM USA).

Intrakingdom interaction networks for soil bacteria and fungi

were constructed separately to show the different topological fea-

tures with Co-occurrence Network inference (CoNet). CoNet is a

robust ensemble-based network inference tool designed to detect

nonrandom patterns of microbial co-occurrence using multiple corre-

lation and similarity measures (Faust et al., 2012). The OTUs were

filtered by setting six as the minimum occurrence across 18 samples.

Then, we selected four methods to evaluate pairwise associations

among OTUs: Pearson, Spearman, Bray–Curtis and Kullback–Leibler

correlation methods. Initial thresholds for all four measures were

selected to retrieve 1,000 positive and 1,000 negative edges. For

each measure and edge, 1,000 renormalized permutation and 1,000

bootstrap scores were generated to alleviate compositionality bias.

The measure-specific p-value was computed first and then merged

with Brown’s method (Brown, 1975). Edges with merged p-values

below .05 were kept after multiple testing using the Benjamini–

Hochberg procedure (Benjamini & Hochberg, 1995). The final net-

work was obtained after the permutations as the null distribution

and the bootstraps as the random distribution. The co-occurrence

networks were visualized with CYTOSCAPE 3.4.0, and network topologi-

cal parameters were analysed using Network Analyzer (Assenov,

Ram�ırez, Schelhorn, Lengauer, & Albrecht, 2008). To compare the

network properties of bacterial and fungal communities, we

extracted subnetworks for each soil sample from the original co-

occurrence network by keeping OTUs associated with specific sam-

ples. Network density and clustering coefficient for these subnet-

works were also calculated. Clustering coefficient was used in the

SEM as an indicator of network connectivity.

3 | RESULTS

3.1 | Alpha and beta diversities of bacteria and
fungi

After quality filtering, the high-quality reads were clustered into 1,974

and 1,756 different OTUs for bacteria and fungi, respectively. For bac-

teria, Acidobacteria was the dominant phylum at all sites, followed by

Proteobacteria and Chloroflexi, as shown in Fig. S1a. For fungi,

Ascomycota was the dominant phylum at sites LA, QZ, ZX and HY. At

sites JO and CT, Basidiomycota was the dominant phylum (Fig. S1b).

Bacterial alpha diversity (both OTU richness and Shannon diversity

index) only showed a significant difference between sites QZ and JO

(Table S2). Although the fungal OTU richness among sites was quite

different, with the highest value at ZX (404.0 � 40.0) and the lowest

at LA (204.7 � 46.8), there were no significant differences among

these sites in terms of fungal Shannon diversity.

The overall patterns of bacterial and fungal community composi-

tions were visualized using NMDS ordination based on the Bray–

Curtis index at the OTU level, as shown in Fig. S1c,d. Both bacterial

and fungal community similarities among sites were significantly dif-

ferent (PERMANOVA, bacteria: pseudo-F = 2.1, p < .01; fungi: pseudo-
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F = 1.5, p < .01). Additionally, samples from JO, ZX and CT were

clustered corresponding to their geographic location, especially for

the bacterial community. To understand the potential relationship

between geographic distance and microbial community similarity, the

distance decay relationship was estimated based on linear regression

with ln-transformed microbial community similarity and geographic

distance (Figure 2). Bacterial community similarity significantly

decreased with increasing geographic distance (b = 0.17, p < .001).

Bacterial taxonomic divisions also displayed significant distance

decay relationships, as shown in Fig. S2a–f; that is, Proteobacteria

(b = 0.18, p < .001), Acidobacteria (b = 0.12, p < .001), Actinobacte-

ria (b = 0.16, p < .001), Verrucomicrobia (b = 0.17, p = .013) and

Planctomycetes (b = 0.41, p < .001). The strong relationships

between community similarity and geographic distance still remained

after controlling for the environmental factors (Table S3). In contrast,

no significant relationship was found between fungal community

similarity and geographic distance (p = .32). The fungal distance

decay relationships in different taxonomic divisions were also not

statistically significant, as shown in Fig. S2g–i.

3.2 | Potential important predictors of microbial
beta diversity

To examine the relationships between bacterial and fungal commu-

nity similarities and environmental factors, we conducted a Pearson

correlation analysis, as shown in Table S4 (n = 135). The results

showed that bacterial community similarity was related to the

differences in SOC density (r = .20, p = .02). Fungal community simi-

larity was related to MAP (r = �.22, p = .009) and MAT (r = �.20,

p = .02) differences. To investigate the potential important predic-

tors of microbial beta diversity, we conducted random forest

modelling with geographic distance, MAP, MAT, soil pH and SOC

density (Figure 3). Models for bacterial and fungal beta diversities

were both significant at the 0.01 level with 5,000 trees. The model

indicated that the most important predictor of bacterial beta diver-

sity was geographic distance, followed by SOC density, MAP and

MAT. For the fungal beta diversity, MAP was most important predic-

tor, followed by MAT, geographic distance and SOC density. Soil pH

was not significant indicator for neither bacterial nor fungal beta

diversity; thus, we removed soil pH in the following analyses.

3.3 | The direct and indirect effects of geographic
and environmental distance on microbial beta
diversity

We used SEM to identify the potential direct and indirect effects of

geographic and environmental distance on bacterial and fungal beta

diversities, which was used widely in other terrestrial ecosystems

(Delgado-Baquerizo et al., 2016; Garc�ıa-Palacios, Maestre, Kattge, &

Wall, 2013). The final models fitted both the bacterial (Figure 4a)

and fungal beta diversity (Figure 4b) data sets. Geographic distance

was the most significant parameter directly influencing bacterial beta

diversity (r = �.60, standardized coefficient). MAP directly (r = .24)

and indirectly through mediating SOC densities (r = �.28) affected

the bacterial beta diversity. SOC densities also directly influenced

the bacterial beta diversity (r = .19). MAT had poor direct impacts

on bacterial beta diversity. Overall, geographic distance, MAP and

SOC densities were important in impacting bacterial beta diversity,

as indicated by the standardized total effects based on the SEM

analyses (Table 1).

Climatic factors played an important role in shaping the fungal

beta diversity (Figure 3b). MAP was the most significant factor

directly influencing the fungal beta diversity (r = .28), and it had an

indirect effect through SOC densities. There was also a weaker and

significant relationship between MAT and fungal beta diversity

(r = �.18). Geographic distance and SOC densities had poor direct

impacts on fungal beta diversity. According to the standardized total

effects in Table 1, MAP and MAT were most important in impacting

fungal beta diversity.

3.4 | Distinct co-occurrence patterns of soil
bacteria and fungi

Distinct patterns were detected in the bacterial and fungal co-occur-

rence networks (Figure 5a,b). After quality filtering and OTU cluster-

ing at 97% identity, 1974 OTUs for bacteria across the 18 soil

samples were used to detect the bacteria–bacteria interactions. The

co-occurrence network of bacteria captured 536 associations (edges)

among 465 OTUs (nodes), with 64.2% positive edges and 35.8%

negative edges (Table 2). To assess the potential interactions among

the main bacterial phyla (Figure 5c), the number of relationships

F IGURE 2 Relationships between soil
bacterial (a) and fungal (b) community
similarities and geographic distance based
on Bray–Curtis similarity indices [Colour
figure can be viewed at
wileyonlinelibrary.com]
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between nodes for each phylum pair was counted. Proteobacteria

tended to be positively associated with members of Actinobacteria

but negatively associated with Planctomycetes and Chloroflexi. Aci-

dobacteria were mainly positively related to Planctomycetes (15 pos-

itive associations of a total of 19 associations) and Actinobacteria

(four negative associations of a total of four associations). We also

identified the fungi–fungi interactions among 1756 fungal OTUs. The

network captured 1052 associations (85.3% positive edges and

14.7% negative edges) among 225 OTUs (Table 2). The results of

the potential interactions among the main fungal classes showed a

dominance of positive associations between fungal classes

(Figure 5d).

The analysis of network topological properties revealed that the

fungal network had higher network density (how densely the net-

work is populated with edges) and clustering coefficients (how well

the nodes are connected with their immediate neighbours) than the

F IGURE 3 Mean predictor importance
(% of increased mean square error) of
environmental distance on soil bacterial (a)
and fungal (b) beta diversities based on
random forest analyses. Significance levels
of each predictor are as follows: *p < .05
and **p < .01. Distance, geographic
distance; MAP, mean annual precipitation;
MAT, mean annual temperature; SOC, soil
organic carbon [Colour figure can be
viewed at wileyonlinelibrary.com]

F IGURE 4 Direct and indirect effects of environmental distance on soil bacterial (a) and fungal (b) community assembly. Single-headed
arrows represent causal relationships. Red and black arrows indicate positive and negative relationships, respectively. Dotted arrows represent
nonsignificant paths (p > .05). Numbers adjacent to arrows are standardized path coefficients. The path widths are scaled proportionally to the
path coefficient. MAP, mean annual precipitation; MAT, mean annual temperature; SOC, soil organic carbon [Colour figure can be viewed at
wileyonlinelibrary.com]

TABLE 1 Standardized regression weights of direct (D), indirect (I) and total (T) effects of environmental factors on microbial beta diversity
in bamboo forest soil

Bacterial beta diversity Fungal beta diversity

D I T D I T

Ln (Distance) �0.60*** 0.15 �0.45 Ln (Distance) �0.11 0.08 �0.03

Ln (MAP) 0.24** �0.05 0.19 Ln (MAP) 0.28** �0.03 0.25

Ln (MAT) 0.003 0.003 0.006 Ln (MAT) �0.18* 0.00 �0.18

Ln (SOC density) 0.19* 0.01 0.20 Ln (SOC density) 0.09 0.00 0.09

Distance, geographic distance; MAP, mean annual precipitation; MAT, mean annual temperature; SOC, soil organic carbon.

*p < .05, **p < .01, ***p < .001.
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bacterial network (Table 2). For a meaningful comparison of network

properties, 18 subnetworks were generated for both bacterial and

fungal communities. The topological properties, that is network den-

sity and clustering coefficients, indicated a potentially more con-

nected fungal network compared with bacteria (Fig. S4). Additionally,

these features indicated that the fungi displayed small-world beha-

viour. In a small-world network, most OTUs are accessible to every

other OTU through a relatively short path (Layeghifard, Hwang, &

Guttman, 2017). The degrees for the bacterial network were dis-

tributed according to power-law distributions (Fig. S5), which indi-

cated a scale-free network structure. A scale-free network indicates

that a few OTUs have many associations with other OTUs, while

most have few associations.

3.5 | Soil carbon metabolic profiles

The SEM results indicated significant effects of fungal beta diversity

(r = .20) and cluster coefficient (r = �.25) on the soil carbon meta-

bolic profile. However, bacterial beta diversity (r = .10) and cluster

coefficient (r = .01) were weakly related with carbon metabolic

profile. Based on the SEM results, neither climatic factors nor soil

properties were directly related to the carbon metabolic profile. The

random forest model also indicated that the beta diversity and clus-

ter coefficient of fungi were the most important factors predicting

the carbon metabolic profile in bamboo forests (Figure 6a). Accord-

ing to the random forest model, the mean square error (MSE)

increased approximately 14.4% and 6.1% when removing the predic-

tor of fungal beta diversity and cluster coefficient, respectively.

However, removing the bacterial beta diversity and cluster coeffi-

cient only increased the MSE by approximately 1.7% and 1.8%,

respectively. Among the three dominant fungal phyla, only the

Ascomycota community similarity was significantly related to the

carbon metabolic profile (r = .25, p = .004). Relationships between

taxonomic abundances and carbon metabolic activities were also

estimated to explore the potentially important microbial groups in

carbon metabolism in bamboo forests (Figure 6b). The abundances

of Chaetosphaeriales (Ascomycota), Helotiales (Ascomycota) and

Mortierellales (Zygomycota) were positively related to the soil meta-

bolism of amines. Agaricales (Basidiomycota) abundance was corre-

lated with the soil metabolism of both amino acids and phenolic

F IGURE 5 Overview of the co-occurrence networks for (a) bacterial and (b) fungal communities in bamboo forest soils and the number of
associations among (c) bacterial phyla and (d) fungal classes. Each node represents an operational taxonomic unit (OTU). Node size is
proportional to the relative abundance. Pie charts in c and d represent the relative abundance of positive and negative associations among
bacterial phyla or fungal classes in the networks. Red circles: positive associations among the taxa; black circles: negative associations among
the taxa; unfilled circles: no significant associations among the taxa [Colour figure can be viewed at wileyonlinelibrary.com]
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acid. We also found a significant relationship between

Chaetosphaeriales abundance and the metabolism of carboxylic

acids. The abundance of three bacterial phyla was also related to

carbon metabolic activities.

4 | DISCUSSION

4.1 | Less dispersal limitation in the fungal
community and the underlying mechanisms

A significant distance decay relationship was detected in the bacterial

communities but not in the fungal communities in bamboo forest soils

(Figure 2). The soil bacterial community compositions were quite dif-

ferent among locations at the regional scale (Fig. S1c). This variation

was spatially autocorrelated, that is, the soil bacterial community simi-

larity across bamboo forests declined significantly with geographic

distance. However, we did not detect a distance decay relationship

for fungi in bamboo forest soils. Distance effects are often attributed

to historical processes, including drift and past selection, along with

dispersal limitation (Hanson et al., 2012). The strong direct effect of

geographic distance on the bacterial community similarity indicated

the importance of dispersal limitation among all the evolutionary and

ecological processes in shaping the bacterial diversity (Figure 4a).

Although the 16S rRNA genes of the relatively common taxa are

widely distributed, bacteria are dispersal limited even at local scales

(Martiny et al., 2011). Compared with bacteria, less dispersal limita-

tion was found in fungi based on the absence of distance decay pat-

terns in both fungal communities and fungal taxa. However, two

additional considerations will be important to draw the conclusion of

less dispersal limitation for fungi. First, some unmeasured environ-

mental factors may be strong controls on bacteria, such as soil nutri-

ents N/P, or soil moisture (Flores-Renter�ıa, Rinc�on, Valladares, &

Curiel Yuste, 2016; Martiny et al., 2011), that may account for auto-

correlated variation with geographic distance and drive the spatial

pattern in bacterial communities. Second, the measured environmen-

tal factors in our study, especially MAP, MAT and SOC density, are all

controls on the decomposition and may more strongly structure the

fungal communities. Nevertheless, the different dispersal potential for

soil bacteria and fungi requires further studies.

Distance decay patterns have been previously reported for soil

fungal communities, for instance, in a meadow ecosystem (Schmidt

et al., 2013) and natural forests (Davison et al., 2012). In addition

to the relatively lower dispersal limitation in fungi, the selective

effects of aboveground plants on the fungal community might also

TABLE 2 Properties of bacterial and fungal co-occurrence networks in bamboo forest soils

Networks Nodes

Edges

Network density Clustering coefficientTotal Positive Negative

Bacteria 465 536 344 (64.2%) 192 (35.8%) 0.005 0.12

Fungi 225 1052 897 (85.3%) 155 (14.7%) 0.042 0.32

F IGURE 6 (a) Mean predictor importance (% of increased mean square error) of environmental distance and microbial community assembly
on carbon metabolic profiles based on random forest analyses. Distance, geographic distance; MAP, mean annual precipitation; MAT, mean
annual temperature; SOC, soil organic carbon; CC, clustering coefficient; (b) The correlations between taxonomic abundance and carbon
metabolic activity of different substrates. Significance level of predictors is as follows: *p < .05; **p < .01 [Colour figure can be viewed at
wileyonlinelibrary.com]
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lead to a pattern of less spatial heterogeneity among the fungi in

this monoculture ecosystem. Soil fungal communities have been

reported to show more tree specificity compared to those of bacte-

ria (Urbanov�a, �Snajdr, & Baldrian, 2015), especially rhizospheric

fungi (Mummey & Rillig, 2006). In fact, in addition to the highly

documented root-symbiotic taxa, tree specificity is also exhibited

by saprotrophic fungi (Urbanov�a et al., 2015). Based on our results,

the plant specificity of soil fungi could be attributed to their impor-

tant roles in the decompositional processes as supported by the

Biolog analysis (Figures 4 and 6). The prevalent saprotrophic fungi

(i.e., Ascomycota and Basidiomycota) were reported to have impor-

tant roles in degrading refractory carbon (Courty et al., 2010). The

physiological properties further suggested that the fungal communi-

ties might be more active in bamboo forests, where there is high

concentration of lignin derived from bamboo litters. Additionally, it

is notable that with lower diversity in fungal communities

(Table S2), stochastic sampling effects may also contribute to the

detection of their lesser heterogeneity compare with bacteria.

Increasing sampling efforts and/or the number of sample replicates

should be the effective ways to ameliorate the effect from stochas-

tic sampling (Zhou et al., 2013). Thus, studies with a more exten-

sive sampling effort are needed to confirm the distinct spatial

patterns of soil bacterial and fungal communities in bamboo forest

ecosystems at regional scales.

Although soil bacteria and fungi have quite different dispersal

rates, environmental selection (especially based on climatic factors)

significantly influenced both groups. Here, we measured only few

environmental factors though important ones, including MAP, MAT

and SOC density. In this case, we reported a stronger selection on

fungal communities. Contemporary environmental selection has been

reported to influence diversity patterns by altering the relative abun-

dances of species (Hanson et al., 2012). In our study, higher SOC

densities seemed to promote the abundance of several bacterial

taxa, such as Actinobacteria, Candidate_division_TM7, Firmicutes,

Gemmatimonadetes, TM6 and WCHB1-60 (p < .05, Table S5). MAP

impacted their abundance positively or negatively. We also detected

an indirect effect of the MAP on bacterial community assembly by

altering the SOC densities according to the SEM analysis because

precipitation will increase the soil moisture, which then intensifies

the loss of carbon in the soil (Nielsen & Ball, 2015). The fungal com-

munity similarity also varied with the MAP and MAT. Both tempera-

ture and precipitation have been reported to impact the fungal

community indirectly via their effects on plants and soil nutrients

(Bahram, Polme, Koljalg, Zarre, & Tedersoo, 2012). Taken together,

water–energy dynamics also play an important role in shaping micro-

bial communities at regional scales. Although we evaluated the

effects of dispersal and selection on microbial assembly, the caveat

here is that other ecological processes (i.e., drift and diversification)

might also be crucial in shaping the microbial geographic patterns.

Meanwhile, with complex interactions among these assembly pro-

cesses (Evans, Martiny, & Allison, 2017), a more comprehensive way

of describing how these processes shape community assembly is

required in further work (Zhou et al., 2014).

4.2 | Potentially more connected network of fungi
than that of bacteria in bamboo forest soils

Microbe–microbe interactions have also been shown to influence

microbial distributions and ecological functions (Barberan et al.,

2012). With different dispersal abilities and selection strengths of

bacteria and fungi in bamboo forest soils based on the results, we

further evaluated the potential contributions of their network

topological characteristics to the spatial assembly. In consistent

with previous studies, soil bacterial and fungal communities in

bamboo forest also exhibited scale-free and small-world character-

istics as in other ecosystems (Jiang et al., 2017; Zhou et al., 2010).

To date, few study compared the network properties between

microbial groups as they always considered them a meta-commu-

nity functioning in the environment. In our study, we aimed to dis-

cuss the potential reasons of distinct spatial patterns of two

groups through understanding their intrakingdom interactions.

Here, we reported that the bacterial network was potentially less

connected than the fungal network in bamboo forest soils based

on their topological properties. On the one hand, this is likely due

to the high habitat variability covered by bacteria and the pres-

ence of fungi in restricted environments. On the other hand, a

recent study suggested that the more connected network may

contribute to the efficient carbon utilization (Morri€en et al., 2017).

Our results that fungi were more active in decompositional pro-

cesses with a potentially more connected network further proved

their finding. The co-occurrence networks of both bacteria and

fungi indicate multiple potential microbe–microbe interactions in

bamboo forest soil. For the bacterial network, positive associations

between members of Proteobacteria and Actinobacteria as well as

between members of Acidobacteria and Planctomycetes might indi-

cate their interdependencies or consistent responses to similar

environmental conditions (Eiler et al., 2012). An opposite result

was described in agricultural soils, where Actinobacteria had a neg-

ative correlation with Proteobacteria (Durrer et al., 2017). This

indicates that interaction patterns might vary among different habi-

tats containing other indigenous groups. Co-occurrence networks

also help to detect potentially competition relationships between

bacterial groups, for example, between the members of Acidobac-

teria and Gemmatimonadetes as well as between Actinobacteria

and Planctomycetes. However, for fungi, positive associations

between taxonomic groups dominated the whole network, that is,

the members of Sordariomycetes with Agaricomycetes, Doth-

ideomycetes, Eurotiomycetes and Leotiomycetes (Figure 5d).

Although we reported distinct co-occurrence networks of bacterial

and fungal communities, these findings should be interpreted cau-

tiously, as microbial diversity may influence network properties

(Faust et al., 2015). Thus, further studies about how microbial

diversity will influence their network properties are necessary.

Despite these inadequacies, network analysis using an OTU-based

approach represents a step forward in understanding microbial

community assembly beyond conventional studies of microbial rich-

ness and abundance.
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4.3 | Connectivity of microbial ecological features
to carbon metabolism in bamboo forests

Soil bacteria and fungi are involved in the decomposition of most

plant detritus in terrestrial ecosystems (Swift, Heal, & Anderson,

1979), forming the key step in carbon cycling by mediating the bal-

ance of carbon being respired as CO2 into the atmosphere or stored

in the soil. Our results showed that both fungi and bacteria are

involved in utilizing a variety of carbon substrates in bamboo forest

habitats, such as amines, phenolic acid, carboxylic acid, polymers and

amino acids. However, the fungal community assembly better pre-

dicts metabolic profile similarities than bacteria in bamboo forest

soils according to both SEM and random forest analyses. Fungi are

known to have broader enzymatic capabilities (de Boer, Folman,

Summerbell, & Boddy, 2005), slower biomass turnover rates (Rousk

& B�a�ath, 2011) and potentially higher carbon use efficiency (Six,

Frey, Thiet, & Batten, 2006) than bacteria. The essential role of soil

fungi in carbon sequestration is always highlighted in forest ecosys-

tems due to their ability to degrade complex substrates. These physi-

ological differences enable fungi to play a more important role than

bacteria in bamboo forests with abundant complex substrates. A

recent study in bamboo forests described that the variation in soil

fungal communities was closely related to changes in organic C

forms (Li et al., 2017). In addition to their physiological differences,

the ecological differences between fungi and bacteria might also

contribute to their functional traits relevant to carbon metabolism.

Our results showed that the fungal community revealed less disper-

sal limitation, stronger environmental selection and a possibly more

highly connected and positively dominated network than bacteria.

Based on these characteristics, fungi may have a relatively stable

community composition at small scales and less heterogenous distri-

bution at regional scales compared to bacteria. Fungi have previously

been reported as being the most connected group among microbes

(archaea, bacteria, fungi and arbuscular mycorrhizal fungi) in forest

soils, which has been linked with their importance in food webs and

SOC cycling (Creamer et al., 2016). This finding further demon-

strated the importance of fungi in soil carbon cycling in bamboo

forests in our study.

In summary, overall depictions of the spatial patterns, network

structures and carbon metabolism-based functional traits of both

bacterial and fungal communities in bamboo forest soils were pro-

vided in this study. We detected a significant distance decay rela-

tionship for bacteria but not for fungi. Both dispersal limitation and

environmental selection contributed to the soil bacterial distribution

pattern. However, the fungal community showed less dispersal limi-

tation compared to the bacterial community. Environmental selec-

tion, especially caused by climatic factors, strongly influenced fungal

community assembly. Moreover, there were distinct co-occurrence

patterns in bacteria and fungi, with potentially higher connectivity

and dominant positive associations in the fungal network. The signif-

icant effects of fungal beta diversity and clustering coefficient on

the carbon metabolic profile indicated that the dispersal potential,

environmental selection and network structure of microbial taxa

likely contributed to their carbon metabolic-based functional traits.

Additionally, the overall analysis and frameworks used in our study

can also be applicable to other ecosystems to identify the significant

environmental drivers and ecological processes in shaping the micro-

bial assemblies which could be connected with their ecosystem

functioning.
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