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1  |   INTRODUCTION

The ecological environments in Central Asia are fragile, un-
stable (Li, Chen, Li, Deng, & Fang, 2015; Qi & Kulmatov, 
2008) and vulnerable to the potential effects of human ac-
tivities. Researchers have focused on the influence of human 
activities on land use and land cover changes combined with 
global climate change in Central Asia (Chen et al., 2013; 
Klein, Gessner, & Kuenzer, 2012; Lioubimtseva, Cole, 
Adams, & Kapustin, 2005). The geochemical components of 
soils, especially potentially toxic elements (PTEs) that are as-
sociated with potential toxicity or ecotoxicity (Duffus, 2002), 

depend on both the natural environment where the land is 
formed and the degree of influence from anthropogenic ac-
tivity (Karim, Qureshi, Mumtaz, & Qureshi, 2014; Saaltink, 
Griffioen, Mol, & Birke, 2014; Smith et al., 2015). Soil that is 
polluted by PTEs increases human health risks via ingestion, 
inhalation and dermal absorption (Chen, Teng, Lu, Wang, 
& Wang, 2015; Tóth, Hermann, Da Silva, & Montanarella, 
2016). Therefore, the pollution of soils with PTEs is a signif-
icant environmental issue.

For long-term comprehensive risk assessments of PTE 
pollution, the gradients of background concentrations and 
environmental variables are usually assumed to be uniform 
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Abstract
The ecological environment in Central Asia is vulnerable to pressure from human 
activity due to the physical geography and climatic fragility of this region. A set of 
indicators suitable for the future assessment of this pressure needs to be proposed. 
Thirty-six topsoil samples (0–5 cm) were collected from roadsides in a suburban re-
gion of Bishkek, the capital of the Kyrgyz Republic in Central Asia, and a risk as-
sessment of anthropogenically disturbed potentially toxic elements (PTEs) was 
systematically conducted with classic statistical methods. The results of detrended 
correspondence analysis and principal component analysis clearly showed that top-
soil samples with high contents of PTEs (Pb, Zn and Cu) were strongly affected by 
traffic within a distance threshold of 200 m and that anthropogenic effects decreased 
significantly with increasing distance from the highway. The enrichment factor and 
anthropogenic contribution for Pb were the highest among the three PTEs, with aver-
age values of 2.0% and 47.4%, respectively, suggesting enrichment. However, the 
results of the human health risk assessment also indicated that noncarcinogenic risks 
did not occur for any of the anthropogenic PTEs. The reported method provides a 
new systematic pathway to reveal anthropogenic influences on the geochemical 
composition of soil. The conclusions of this work will be highly valuable as impor-
tant guidelines for agriculture, and the results of the PTE contents will provide a 
scientific basis for soil collection in future studies.
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at small scales (Wu, Zhou, & Li, 2011); therefore, many 
researchers have focused only on pollution and the assess-
ment of potentially toxic elements but have not given any 
consideration to the possibility of spatial variability in the 
field (Mamat, Haximu, Zhang, & Aji, 2016; Tang et al., 
2015; Zhang, Juying, Mamat, & QingFu, 2016). Soil is a 
valuable natural resource in the arid zone of Central Asia. 
The lands on both sides of roads have been the main areas 
of agricultural farming due to convenient transportation. 
However, it is unclear whether the soils on the roadsides 
have been affected. If these soils have been affected, what 
is the enrichment pattern of PTEs on the roadsides? In 
this paper, based on the assessment of the geochemical 
elemental characteristics of surface soils collected from 
the Bishkek suburbs in Kyrgyzstan (Central Asia), mul-
tivariate statistical analyses and potential ecological risk 
calculations were applied to examine the topsoil samples 
and the responses of their elemental compositions to an-
thropogenic factors. In particular, whether human traffic 
and transportation activities have altered the geochemical 
compositions of topsoils and caused PTE pollution was in-
vestigated. This research will provide a scientific basis for 
the prevention and control of soil heavy metal pollution in 
the future.

2  |   MATERIALS AND METHODS

2.1  |  Sampling and laboratory analysis
Bishkek is the capital of Kyrgyzstan, which is located in 
the eastern part of Central Asia (Figure 1). The soils in 
the study area are characterized as Calcisols (FAO, 2012) 
based on the soil classification in the Harmonized World 
Soil Database (v 1.2). Corn crops are planted in this region. 
Fertilizer use in all Kyrgyzstan was just 18.8 kilograms per 
hectare of arable land (Light, 2007; Swinnen, Van Herck, & 
Sneyers, 2011). After field research, no fertilizer was used 
in this region. The soils, which are often used to evaluate 
the influences of regional anthropogenic factors (Li, Wan, 
Ben, Fan, & Hu, 2017; Salako, Hauser, Babalola, & Tian, 
2006), were collected at depths of 0–5 cm at each location 
using a corer with a cutting ring (with an inner diameter of 
50 mm and a depth of 50 mm). Based on the chessboard 
stationing method with a 50 m interval, 36 sampling points 
(4 × 9) were placed at a given distance from highway M39. 
Although Kyrgyzstan is a low-income developing coun-
try, the number of registrations reached 444.1 thousand 
motor cars in Bishkek, equivalent to 1 unit per two persons 
(Kadyraliev, 2011). Since there is no official traffic data for 

F I G U R E   1   Location of the study area and design of quadrat-based sampling in the Bishkek suburbs
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highway M39, we recorded traffic data on 24 October 2018, 
which reached 65 units per minute at 13:00 hr. The criteria 
were that the samples had to be within 150 m (A01–A12), 
200–300 m (B01–B12) and 350–450 m (C01–C12) of the 
side of the highway, which allowed a direct comparison of 
the effects of traffic on soil composition. In this paper, in 
order to separate the PTEs that are affected by the natural 
background, we analysed PTEs (Co, Cr, Cu, Ni, Pb, V and 
Zn) and major elements (Al, Na, K, Ca, Mg, Fe, Mn and Ti). 
Following the elemental analysis method (Liu, Wu, & Pan, 
2016; Ma, Wu, & Abuduwaili, 2013), surface soil samples 
were dried, and subsamples weighing ~0.125 g were ground 
through a 200 μm mesh, digested with HF–HNO3–HClO4 
and prepared for geochemical analysis using an American 
Leeman Labs profile inductively coupled plasma atomic 
emission spectrometer with a relative individual elemental 
concentration error of <5%.

2.2  |  Classic statistical methods
Principal component analysis (PCA) was used to iden-
tify the potential factors influencing elemental variation 
(Kelepertzis, 2014; Micó, Recatalá, Peris, & Sánchez, 2006). 
Detrended correspondence analysis (DCA), which aided in 
the identification of interrelationships among soil samples, 
was used to separate topsoils that had anthropogenic contam-
ination from the samples (Hill & Gauch, 1980; Peet, Knox, 
Case, & Allen, 1988). Detrended correspondence analysis 
has proven to be a highly reliable and useful tool for data 
exploration and is widely used in ecological and environ-
mental studies (Nilsson, Jansson, & Zinko, 1997; Smol et al., 
2005; Stephansen, Nielsen, Hvitved-Jacobsen, Pedersen, & 
Vollertsen, 2016).

2.3  |  Methods for the assessment of 
pollution and anthropogenic contributions to 
potentially toxic elements
Enrichment factors (EFs) have been widely used to calcu-
late the extent of anthropogenic contributions (ACs) using 
a normalizing element (i.e., conservative metals) such as 
Al (Varrica, Aiuppa, & Dongarrà, 2000), Fe (Chakraborty, 
Bhattacharya, Singh, & Maity, 2014), Ti (Taboada, Cortizas, 
García, & García-Rodeja, 2006), Mn (Huang et al., 2014) 
and K (Nesbitt, Markovics, & price, 1980). The EF for ele-
ment X is defined as follows:

The anthropogenically derived source ([X]anth) is defined 
as follows:

The parts with an anthropogenic contribution (AC; 
[X%]anth) are defined as follows:

In Equations 1–3, R is the reference element, [X/R]S 
is the concentration ratio of X to R in the topsoil samples, 
and [X/R]B is the concentration ratio of X to R in the nat-
ural background materials. EF < 1 suggests that there is no 
enrichment; 1 < EF < 3 suggests that there is minor enrich-
ment; 3 < EF < 5 suggests that there is moderate enrichment; 
and EF > 5 suggests that there is severe enrichment (Sakan, 
Đorđević, Manojlović, & Predrag, 2009).

A widely used model for the health risk assessment 
(Jiang et al., 2017; Li, Ma, van der Kuijp, Yuan, & Huang, 
2014; Olawoyin, Oyewole, & Grayson, 2012), developed 
by the United States Environmental Protection Agency 
(USEPA, 1996), is selected to calculate the potential non-
carcinogenic risks of the PTEs to human health. For the 
contaminated soils, three exposure pathways of PTEs are 
considered: (a) ingestion: direct ingestion of soil particles 
and indirect consumption of crops grown on contaminated 
soils; (b) dermal contact with PTEs; and (c) inhalation of 
resuspended particles by nose or mouth (Jiang et al., 2017; 
Wu et al., 2015).

The average daily intake (ADD) of a PTE via ingestion 
(ADDing) is calculated as follows:

The average daily intake of the PTE via inhalation 
(ADDinh) is calculated as follows:

The average daily intake of the PTE via dermal absorption 
(ADDderm) is calculated as follows:

The hazard quotient (HQ), which is designed as a measure-
ment of noncarcinogenic hazards, is calculated as follows:

The hazard index (HI), which represents mixed pollution, 
is calculated as follows:

In Equations 4–8, C is the content of the potentially toxic 
element (mg kg–1). The ingestion rate (IngR) is 200 mg  
day–1 (Ferreira-Baptista & De Miguel, 2005). The inhalation 
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rate (InhR) is 12.8 m3 day–1 (Qing, Yutong, & Shenggao, 
2015). The exposure frequency (ExF) is 350 day year–1 
(Gu, Gao, & Lin, 2016). The exposure duration (Ed) is 30 a. 
Body weight (BW) is 70 kg (Gu et al., 2016). The exposure 
time (AT) is AT = 365 × ED. The particle emission factor 
(PEF) is 1.36 × 109 m3 kg–1 (Ferreira-Baptista & De Miguel, 
2005). The exposed skin area (SA) is 4350 cm2 (Qing et al., 
2015). The skin adherence factor (SL) is 0.2 mg cm−2 day−1 
(Ferreira-Baptista & De Miguel, 2005). The dimensionless 
dermal absorption factor (ABS) is ABS = 0.001 (Ferreira-
Baptista & De Miguel, 2005). The corresponding reference 
dose for exposure pathway i is denoted as RfDi (USEPA, 
1996). The average daily intake of PTEs for exposure path-
way i is denoted as ADDi. If HI < 1 or HQ < 1, there is no 
noncarcinogenic risk. If HI > 1 or HQ > 1, noncarcinogenic 
effects may occur (Lu, Zhang, Li, & Chen, 2014).

3  |   RESULTS AND DISCUSSION

3.1  |  Geochemical features and factors 
influencing roadside soils in the suburban 
region in Bishkek
The geochemical components of soil, especially PTEs, de-
pend on both the natural environment where the land is 
formed and the degree of influence from anthropogenic ac-
tivity (Dung et al., 2013; Saaltink et al., 2014). However, 
it is undeniable that the PTEs can undergo chemical phase 
changes and spatial migration with changes in time and re-
gional environments (irrigation, crop planting, soil prop-
erties, soil erosion, atmospheric dust fall, etc.; Bi, Zhou, 
Chen, Jia, & Bao, 2018; Caporale & Violante, 2016; Han 
et al., 2003; Shi et al., 2018). To minimize the impacts of 
time and regional environments on the content distribu-
tion of PTEs, a small spatial scale study was conducted. 
The contents of major elements and PTEs are shown in 
Figure 2. The results of the PCA showed that three factors 
accounted for 86% of the total variance (Table 1). The first 
factor (F1) was the main factor influencing the major and 
trace elements (Al, Fe, Mn, Ti, Co, Cr, Ni and V; Table 2). 
Al (Varrica et al., 2000), Fe (Chakraborty et al., 2014), Mn 
(Huang et al., 2014; Loska, Cebula, Pelczar, Wiechuła, & 
Kwapuliński, 1997) and Ti (Sabbioni, 1995; Taboada et al., 
2006) are extremely immobile and are regarded as typical 
lithogenic elements. This relationship suggested that these 
elements were released by the weathering of local bedrock 
(Wilcke, Müller, Kanchanakool, & Zech, 1998). Therefore, 
these elements mainly represent a lithogenic origin from 
the weathering and erosion of rocks and soil parent materi-
als in this region.

The second factor (F2) controlled the variations in the 
elements Al, Na, K, Ca and Mg; Ca and Mg had high neg-
ative loadings on F2 (Table 2). The soil in this study area, 

which is classified as a Calcisol, formed at an early stage of 
weathering due to carbonate leaching (Mavris et al., 2010). 
The second factor reflected the gradient of weathering inten-
sity. The percentage changes in the major immobile elements 
(Al, Na and K) are influenced by typical mobile elements 
(Ca and Mg) during pedological weathering (Chen, Ji, Qiu, 
& Lu, 1998).

The third factor (F3) dominated PTEs (Pb, Zn and Cu) 
with high loadings (from 0.89 to 0.94). The third controlling 
factor was significantly different from the natural factors (F1 
and F2; Table 2). The PTEs (Pb, Zn and Cu) were influenced 
by anthropogenic traffic contributions. Vehicle emissions 
represented a major source of anthropogenic Pb prior to 
the use of unleaded gasoline (Cao et al., 2014; Ewing et al., 
2010). High Zn concentrations in our analysed topsoil sam-
ples were highly attributable to the attrition of rubber from 
motor vehicle tires, which was exacerbated by poor-quality 
road surfaces in the region. Lubricating oils often included 
Zn as one of the many different additives (Okunola, Uzairu, 
& Ndukwe, 2007). Copper contamination may have oc-
curred due to the wearing out of engine parts, such as thrust 
bearings, bushings and metal bearings, which are commonly 
found along roadsides in this study area (Okunola et al., 
2007).

Using PCA, anthropogenically influenced elements were 
revealed; however, it was unknown whether there was spa-
tial variability in the study area or how large the impacts of 
the anthropogenic factors were. Due to the large dimensional 
differences in the geochemical data, a logarithmic transfor-
mation was conducted before analysis. In addition, DCA was 
used to reveal the influences of natural processes and anthro-
pogenic factors on the soil samples.

The DCA results from the soil data suggested that axes 
1 and 2 accounted for 46.61% and 24.06% of the total vari-
ation, respectively. The two axes explained 70.67% of the 
variance in the soil data, which showed strong gradients 
(Figure 3). The elements Ca, Mg, Na, K and Al had strong 
positive/negative loadings with axis 1, and axis 2 separated 
the elements Pb, Zn and Cu from the elemental group with 
positive loadings. The first axis strongly indicated that chem-
ical weathering was the underlying gradient. The second 
axis strongly indicated anthropogenic influence, which was 
consistent with the above-mentioned PCA analysis. The re-
sults suggested that the soils in quadrants I and II (Figure 3) 
at a range of 200 m were strongly influenced by traffic and 
transportation; however, the topsoil samples A01 and A04 
were not influenced by anthropogenic factors. In a study at 
the beginning of this century, the enrichment factors for Pb, 
Cu, Cd, Zn, Ni and Cr became negligible beyond a distance 
of 5 m from the roadside of a major French highway (Pagotto, 
Rémy, Legret, & Le Cloirec, 2001). In Nigeria, heavy metals 
rapidly decreased with distance, reaching the natural back-
ground levels at a distance of 50 m from the road (Fakayode 
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& Olu-Owolabi, 2003). The influences of heavy metal pol-
lution (Zn, Pb and Cd) induced by traffic in the vicinity of a 
highway (A31, France) can reach up to 320 m, but the maxi-
mum contamination is observed between 5 and 20 m (Viard, 
Pihan, Promeyrat, & Pihan, 2004). In the city of Kavala 
(Greece), pollution decreased sharply with distance and 
reached a natural background level at approximately 50 m 
(Yassoglou, Kosmas, Asimakopoulos, & Kallianou, 1987). 
In Chinese pollution assessments of PTEs in farmland soils 
adjacent to a superhighway, Cu, Pb and Zn concentrations 
decreased with increasing distance from the superhighway 

within a 320 m range (Qin, Lou, Jiang, & Liang, 2009; Ruan 
& Jiang, 1999), which suggested possible differences in the 
traffic environments.

3.2  |  Risk assessment of potentially toxic 
element pollutants affected by human activities
The analytical results of the PCA confirmed that Fe is a 
conservative element; therefore, the major element Fe was 
designated as the reference element. The contents of Fe and 
the anthropogenically influenced PTEs Pb, Zn and Cu in 

F I G U R E   2   The contents of the major and potentially toxic elements

A12

C12

A01

B01

B12

C01

A12

C12

A01

B01

B12

C01

A12

C12

A01

B01

B12

C01

A12

C12

A01

B01

B12

C01

A12

C12

A01

B01

B12

C01

A12

C12

A01

B01

B12

C01

A12

C12

A01

B01

B12

C01

A12

C12

A01

B01

B12

C01

A12

C12

A01

B01

B12

C01

A12

C12

A01

B01

B12

C01

A12

C12

A01

B01

B12

C01

A12

C12

A01

B01

B12

C01

A12

C12

A01

B01

B12

C01

A12

C12

A01

B01

B12

C01

A12

C12

A01

B01

B12

C01

000 2000 4000 60000 010 20 30 40

0 10 20 30 400 4 8 1612 200 20 40 60 80

0 20 40 60 80

Fe (g kg–1) Mn (mg kg–1)

V (mg kg–1) Zn (mg kg–1)Pb (mg kg–1)Ni (mg kg–1)Cu (mg kg–1)

Mg (g kg–1)Ca (g kg–1)K (g kg–1)Na (g kg–1)Al (g kg–1)

Ti (mg kg–1) Co (mg kg–1) Cr (mg kg–1)

400 800 1200 4 8 12 16 20 40 80 120

0 20 40 60 0 20 40 60 0 40 80 120 160 0 40 80 120 160

0 40 80 1200 10 20 30



6  |      MA et al.

quadrants III and IV (Figure 3) were used as the natural back-
ground values. The calculated results in Table 3 show that the 
EF and AC of Pb were the highest, with average values of 2.0 
and 47.4%, respectively, suggesting significant enrichments 
in PTEs (Pb, Zn and Cu). Based on the risk assessment for 
potentially toxic element pollutants, the HQs of Zn, Cu and 

Pb (regarding the ingestion of surface soils) were higher than 
those for inhalation and dermal absorption, and the HQs of 
Pb were the highest. The highest HI values for Pb, Zn and 
Cu were 4.5 × 10−2, 1.5 × 10−3 and 5.4 × 10−3, respectively 

F I G U R E   3   The factors influencing the samples and elements 
derived from a detrended correspondence analysis
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T A B L E   2   Rotated component matrix (PCA loadings >0.5 are 
shown in bold)

Elements F1a F2a F3a

Al 0.59 0.77 −0.12

Na −0.04 0.77 −0.13

K 0.08 0.88 −0.01

Ca −0.20 −0.93 0.05

Mg 0.17 −0.80 −0.18

Fe 0.93 0.29 0.11

Mn 0.89 0.07 0.15

Ti 0.82 0.33 0.16

Co 0.97 0.12 0.13

Cr 0.82 −0.32 0.33

Cu 0.26 −0.09 0.89

Ni 0.83 −0.42 0.17

Pb −0.01 −0.02 0.94

V 0.96 0.01 −0.12

Zn 0.17 0.04 0.93
aExtraction method: principal component analysis. Rotation method: varimax 
with Kaiser normalization. Rotation converged in five iterations. 

T A B L E   1   Eigenvalues and the total and cumulative % of variance

Factors

Initial eigenvalues Rotation sums of squared loadings

Total % of variance Cumulative % Total % of variance Cumulative %

1 6.50 43.35 43.35 6.07 40.44 40.44

2 3.96 26.37 69.72 3.97 26.46 66.90

3 2.40 16.02 85.74 2.83 18.84 85.74

4 0.71 4.72 90.46

5 0.51 3.37 93.84

6 0.26 1.70 95.54

7 0.19 1.25 96.79

8 0.18 1.23 98.02

9 0.12 0.80 98.81

10 0.07 0.49 99.31

11 0.05 0.31 99.62

12 0.03 0.18 99.80

13 0.02 0.14 99.94

14 0.01 0.04 99.98

15 0.00 0.02 100.00

Note. Extraction method: principal component analysis.
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(Table 3). The HI values suggested that there were no noncar-
cinogenic risks for any of the anthropogenic PTEs.

Through the above analysis, two important arguments can 
be made. One argument is derived from the geochemical sur-
vey. Soil investigations of geochemical baselines (Salminen 
& Gregorauskien, 2000), which are fundamental and valuable 
for the assessment of PTE contamination (Okedeyi, Dube, 
Awofolu, & Nindi, 2014; Wu et al., 2015; Zahra, Hashmi, 
Malik, & Ahmed, 2014), should avoid sampling within 
200 m of the highway in this region. The other argument can 
be made for food cultivation. Despite the difference in trans-
fer coefficients describing the transfer of PTEs from soil to 
plant, crops grown in contaminated soils accumulate higher 
amounts of PTEs than those grown in uncontaminated soils 
(Intawongse & Dean, 2006; Tasrina Rc & Ali, 2015). The 
absorption of PTEs through foods may lead to the disruption 
of biological processes in the human body (Jolly, Islam, & 
Akbar, 2013). According to the research results in this area, 
farmlands should be far from the road, at least 200 m away.

4  |   CONCLUSIONS

With mathematical methods and a model for health risk as-
sessment, anthropogenically disturbed PTEs and anthropo-
genically influenced topsoils in a suburban region in Bishkek 
were revealed. The results were as follows:

1.	 Major elements and PTEs (Al, K, Na, Ca, Mg, Fe, 
Mn, Ti, V, Cr and Ni) were affected by natural 

processes. The PTEs (Pb, Zn and Cu) were strongly 
affected by human traffic and transportation 
activities.

2.	 Topsoil samples collected within a distance threshold 
of 200 m from the highway had high contents of PTEs 
(Pb, Zn and Cu) and were strongly affected by the pres-
ence of traffic, and the anthropogenic effects decreased 
significantly with increasing distance from the 
highway.

3.	 Among the PTEs (Pb, Zn and Cu), the EF and AC of Pb 
were the highest, with average values of 2.0% and 
47.4%, respectively, suggesting significant enrichment. 
However, the HIs were less than one, suggesting that 
there were no noncarcinogenic risks for any of the an-
thropogenic PTEs.
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T A B L E   3   The ratios of anthropogenic contributions and the hazard index (HI) for potentially toxic elements in surface soils

Samples EFCu EFPb EFZn Cuauth % Pbauth % Znauth % HICu HIPb HIZn

A02 2.8 3.1 2.1 64.7 67.5 52.4 5.4 × 10−3 4.1 × 10−2 1.4 × 10−3

A03 1.3 1.8 1.0 24.5 44.5 0.0 3.7 × 10−3 3.5 × 10−2 9.7 × 10−4

A05 2.1 2.0 1.2 52.2 50.0 14.4 3.6 × 10−3 2.5 × 10−2 7.1 × 10−4

A06 1.4 2.5 1.7 28.7 59.8 40.9 2.8 × 10−3 3.6 × 10−2 1.2 × 10−3

A07 1.9 2.4 1.9 46.5 58.5 48.5 3.8 × 10−3 3.5 × 10−2 1.4 × 10−3

A08 1.9 2.7 1.8 48.3 63.0 44.2 4.5 × 10−3 4.5 × 10−2 1.5 × 10−3

A09 1.2 1.8 1.1 15.6 44.5 4.9 3.0 × 10−3 3.2 × 10−2 9.4 × 10−4

A10 1.5 1.5 1.1 32.4 32.7 12.1 3.0 × 10−3 2.1 × 10−2 8.1 × 10−4

A11 0.8 1.5 1.8 - 34.6 43.2 1.1 × 10−3 1.4 × 10−2 8.1 × 10−4

A12 1.7 2.3 1.4 41.9 55.8 31.0 3.2 × 10−3 3.0 × 10−2 9.6 × 10−4

B01 1.1 1.8 1.2 11.1 44.4 17.8 2.0 × 10−3 2.3 × 10−2 7.8 × 10−4

B02 1.0 1.3 1.1 4.6 24.4 7.3 2.0 × 10−3 1.8 × 10−2 7.2 × 10−4

B03 1.1 1.6 1.1 7.9 35.7 12.7 2.0 × 10−3 2.0 × 10−2 7.5 × 10−4

Average 1.5 2.0 1.4 31.5 47.4 25.3 3.1 × 10−3 2.9 × 10−2 9.9 × 10−4

Maximum 2.8 3.1 2.1 64.7 67.5 52.4 5.4 × 10−3 4.5 × 10−2 1.5 × 10−3

Minimum 0.8 1.3 1.0 4.6 24.4 0.0 1.1 × 10−3 1.4 × 10−2 7.1 × 10−4
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