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Abstract: Precipitation is the main component of global water cycle. At present, satellite quantitative 

precipitation estimates (QPEs) are widely applied in the scientific community. However, the 

evaluations of satellite QPEs have some limitations in terms of the deficiency in observation, 

evaluation methodology, the selection of time windows for evaluation and short periods for 

evaluation. The objective of this work is to make some improvements by evaluating the spatio-

temporal pattern of the long-terms Climate Hazard Group InfraRed Precipitation Satellite’s 

(CHIRPS’s) QPEs over mainland China. In this study, we compared the daily precipitation estimates 

from CHIRPS with 2480 rain gauges across China and gridded observation using several statistical 

metrics in the long-term period of 1981–2014. The results show that there is significant difference 

between point evaluation and grid evaluation for CHIRPS. CHIRPS has better performance for a 

large amount of precipitation than it does for arid and semi-arid land. The change in good 

performance zones has strong relationship with monsoon’s movement. Therefore, CHIRPS 

performs better in river basins of southern China and exhibits poor performance in river basins in 

northwestern and northern China. Moreover, CHIRPS exhibits better in warm season than in 

Winter, owing to its limited ability to detect snowfall. Nevertheless, CHIRPS is moderately sensitive 

to the precipitation from typhoon weather systems. The limitations for CHIRPS result from the 

Tropical Rainfall Measuring Mission (TRMM) 3B42 estimates’ accuracy and valid spatial coverage.  

Keywords: CN05.1; ungauged regions; PBias; CFSR; River Basin 

 

1. Introduction 

Precipitation is the main component of the global water cycle. The information of precipitation’s 

spatio-temporal pattern is a fundamental and crucial parameter for water resources management, 

natural hazards prevention, and insurance [1–4]. At present, the observation of precipitation are 

based on ground rain gauges, weather radar and satellite retrievals. The ground rain gauges and 

weather radar usually distributed near human settlements. However, the regions in which the 

ecological environment is vulnerable (e.g., Central Asia, Northern Africa and Tibetan Plateau) are 

monitored by the sparsely distributed weather observation networks [5,6]. Therefore, the satellite 

retrieval precipitation estimates could solve the scarcity of traditional precipitation observation in 

widespread remotely ungauged regions.  
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In 1997, the Tropical Rainfall Measuring Mission (TRMM) became the first professional 

precipitation detection program. Subsequently, a series of TRMM satellite precipitation retrieval 

algorithms have made kinds of quantitative precipitation estimates (QPEs), such as TRMM Multi-

satellite Precipitation Analysis (TMPA) [7], Climate Prediction Center morphing technique 

(CMORPH) [8], Precipitation Estimation from Remotely Sensed Information using Artificial Neural 

Networks (PERSIANN) [9], and Global Satellite Mapping of Precipitation (GsMaP) [10]. In China, 

China Meteorological Administration (CMA) has undertaken several operational real-time 

precipitation production, such as blended CMORPH precipitation [11], precipitation based on 

Fengyun–2 geostationary satellite (http://data.cma.cn/data/online.html?t=6), and East Asian multi-

satellite integrated precipitation (EMSIP) [12]. In 2014, the Global Precipitation Measurement (GPM) 

mission began to replace TRMM program and became the next-generation global precipitation 

observation system [13]. 

These satellite’s QPE mentioned above have been evaluated on multiple spatial and temporal 

scales in mainland China. The comparison among TRMM, GsMaP and CMORPH QPEs shows that 

CMORPH has better performance than GsMaP and PERSIANN over China, yet GSMaP_Gauge QPE 

produces better fractional coverage than TRMM, CMORPH and PERSIANN [14]. The GPM exhibits 

poor performance in Winter and low accuracy in northwestern China [15]. In northwestern China, 

CMORPH and PERSIANN have low ability of detecting the precipitation than TRMM series [16]. In 

the Tibet Plateau, TRMM 3B42 and CMORPH perform better than the TRMM 3B42RT and 

PERSIANN products [17]. Moreover, the TRMM 3B42 product performs better in daily precipitation 

probability distributions than CMORPH [18]. In the Yangtze River Basin, TRMM 3B42 V7 is basically 

superior to CMORPH and PERSIANN [19,20]. TRMM 3B42 V7 is also better than TRMM 3B42RT in 

Yellow River Basin, which is on the northern side of Yangtze River Basin [21]. Although the TRMM 

3B42 V7 product has better performance than other satellite’s QPE, the evaluation results are quite 

distinguishable from different hydrological basins. Therefore, it is necessary to comprehensively 

evaluate the QPE products in different hydrological basins across China for scientific research and 

operational practice.  

The scientific community has expended significant effort to downscale TRMM QPEs on finer 

spatial scales [22,23]. With the development of satellite sensors and precipitation retrieval algorithms, 

these scale problems should be solved. The Climate Hazards Group Infrared Precipitation Satellite 

(CHIRPS) is a new land-only climatic database for precipitation [24], which has excelled as compared 

with other QPEs in terms of long-terms series and high spatial resolution (Table 1). It merges three 

types of information, global climatology, satellite estimates and in situ observations. In addition, its 

temporal coverage is 1981-present and spatial resolution is higher, up to 0.05°. To date, CHIRPS 

precipitation production has been evaluated in Brazil [25], Cyprus [26], Nepal [27], Italy [28], Mozambique 

[29], and Vietnam’s Mekong River Basin [30]. The results show that CHIRPS can consistency with ground 

gauges. However, the CHIRPS’ reliability has not been ever analyzed in detail in the complex terrains of 

China.  

Table 1. Main satellite quantitative precipitation estimates (QPEs). 

QPEs 
Temporal 

Coverage 

Temporal and 

Spatial Resolution 
Websites 

TRMM 3B42 1998-present 0.25°/3 h https://pmm.nasa.gov/data-access/downloads/TRMM 

CMORPH 1998-present 0.07°/30 min 
ftp://ftp.cpc.ncep.noaa.gov/precip/CMORPH_V1.0/RAW/8k

m–30min/ 

PERSIANN-CRT 1983-present 0.25°/1 d 
ftp://persiann.eng.uci.edu/CHRSdata/PERSIANN-

CDR/daily/ 

GsMaP 2000-present 0.10°/30 min ftp://hokusai.eorc.jaxa.jp/reanalysis/v6/ 

GPM IMERGE 2014-present 0.10°/30 min https://pmm.nasa.gov/data-access/downloads/gpm 

CHIRPS 1981-present 0.05°/1 d 
ftp://ftp.chg.ucsb.edu/pub/org/chg/products/CHIRPS–

2.0/global_daily/netcdf/p05/ 

In previous studies, it has been found that high-resolution QPEs, with a spatial resolution higher 

than 0.10°, has been evaluated on a regional scale with a 0.25° gridded observation [14,15,31,32]. The 
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evaluation method can capture the climatological pattern of QPEs ignoring the regional 

precipitation’s spatial characteristics, which cannot validate high-resolution QPEs objectively. In 

western China or Central Asia, a mass of grids in 0.25° gridded observation covers no more than one 

station, when compared to three to ten stations in eastern China. This means that the gridded 

evaluation has great uncertainties and errors. Therefore, the point validation using high density of 

rain gauge networks in these area is relatively reasonable [33–36] for regional QPE evaluation, 

especially for high-resolution QPEs. Second, the categorical statistical indices are commonly used in 

quantitative validation with different rainfall intensity (e.g., light rain (<1 mm/day) and moderate 

rain (10 mm/day < precipitation ≤ 24.9 mm/day)) in some studies [32,17]. When precipitation is close 

to bin boundary, as both of 0.9 and 1.1 mm/day are close to 1 mm/day, the precipitation is binned 

into two classes. However, these precipitation intensities are almost the same even ignoring the 

observed errors (e.g., those of the rain gauge instrument and those from wind effects). Therefore, this 

binning method results in evaluations with significant uncertainties. Thus, the traditional statistical 

metrics, e.g., bias, integrated with categorical statistical indices would give insight into both 

categorical information and bias on precipitation. Third, the previous evaluations usually chose time 

windows on inter-annual and seasonal scales for their reliability on climatological patterns. Hence, 

these evaluations are not reliable for extreme precipitation events (e.g., floods, typhoons, and 

snowstorms), which limits the application for real-time operation. Finally, the previous evaluations 

have been done in short periods (usually less than 10 yrs) [33,37], which would be effected by 

different satellite sensors [15,38] and different satellite precipitation retrieval algorithms [39,40]. 

Hence, these evaluations lack robustness and stability.   

The objective of this work is to evaluate the spatio-temporal pattern of CHIRPS QPEs over 

mainland China and to find the potential hydro-meteorological applications. In this study, high-

density rain gauges network, which contains 2480 rain gauges across mainland China, and the 

component bias method are employed to evaluate the long-term CHIRPS QPEs during 1981–2014. In 

addition, the typical precipitation cases in Summer and Winter are analyzed to test the capture ability 

of the rain-bearing system’s evolution. This study gives insight into some practical improvements to 

evaluation of high-resolution satellite QPEs. It is a challenge to perfectly solve the problems 

mentioned regarding the deficiency in precipitation observation, evaluation methodology, and the 

selection of time windows for evaluation. This study attempts to give more information on the 

evaluation of high-resolution satellite’s QPE. The rest of this paper is organized as follows: In Section 

2, we introduce the datasets and the evaluation methods. Section 3 contains the analysis of CHIRPS 

precipitation statistics and typical cases. Section 4 is the discussion about CHIRPS’ error sources and 

evaluation limitation. In Section 5, we present the key conclusions of the paper. 

2. Methodology and Datasets 

2.1. Study Area 

Figure 1 shows the topography of mainland China. Referring to previous studies on hydrologic 

research in China [41,42], this study uses the hydrologic model SWAT toolbox, Qgis software, and 

GTOPO30 DEM dataset (https://lta.cr.usgs.gov/GTOPO30) to automatically separate China’s 

mainland into ten sub-regions. These sub-regions are shown in Figure 1 and are as follows: (I) 

Songhua River Basin (SHJ), (II) Liaohe River Basin (LH), (III) river basins in northwest China (XB), 

(IV) Haihe River Basin (HAH), (V) Yellow River Basin (YR), (VI) Yangtze River Basin (YZR), (VII) 

Huaihe River Basin (HUH), (VIII) River Basins in Southeast China (DN), (IX) river basins in 

southwest China (XN), and (X) Pearl River Basin (PR). Region XB, contains several famous rivers: the 

Tarim River, which is the largest inland river in China; the Heihe River, located in the Hexi corridor 

in northwest China; the Ili River, an international river shared by Kazakhstan and China. Region XN 

is the origin of the Mekong River that crosses the Indochina Peninsula, which is also an international 

river that is flowing through other countries in Southeast Asia and China.  

Generally, the rainy season in mainland China is affected by East Asian Summer Monsoon. The 

rainy season begins with the monsoon’s arrival and ends upon the monsoon’s withdrawal [43]. 
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During the rainy season, the typhoons coming from Pacific Ocean usually bring an amount of 

precipitation to coastal regions. In Winter, the precipitation in northern China is controlled by mid-

latitude westerlies, which bring ocean moisture [44]. Therefore, in this study, we choose typhoons 

and a snowstorm that was induced by westerlies for typical case evaluation. 

 

Figure 1. High-density rain gauge observation network (black dots) and main hydrological basins in 

China(blue outline). Base map is the topography of mainland China (Map Registration No. GS 

(2016)2885). The lower-right subplot displays the South China Sea. The 10 sub regions used in this 

study are as follows: (a) Songhua River Basin (SHJ), (b) Liaohe River Basin (LH), (c) river basins in 

northwest China (XB), (d) Haihe River Basin (HAH), (e) Yellow River Basin (YR), (f) Yangtze River 

Basin (YZR), (g) Huaihe River Basin (HUH), (h) River Basins in Southeast China (DN), (i) river basins 

in southwest China (XN), and (j) Pearl River Basin (PR). 

2.2. Observation and Satellite Retrieval Precipitation Production  

Daily rain gauge data were obtained from China Meteorological Administration (CMA), 

downloaded from http://data.cma.cn. This dataset concludes 2480 rain gauge stations from 1979 to 

2014. Excluding the stations that have more than 1 yr. of missing data and does not be covered by 

CHIRPS, there are 2378 stations left that are consistent with the temporal coverage of CHIRPS. In 

addition to the point observation, this study collects several gridded precipitation products (e.g., 

APHRODITE [45], CN05.1 [46], and ITPCAS [47]). According to previous studies, APHRODITE 

shows smaller precipitation intensity and higher precipitation frequency [48]. ITPCAS uses the open 

dataset under WMO data sharing framework, which has the same stations as APHRODITE and 

CHIRPS. Although ITPCAS’s spatial resolution is higher, up to 0.10°, the same rain gauge data will 

cause higher autocorrelation and will make the evaluation results less objective. In China, 

meteorological observation follows the WMO standards, in which observation time is Coordinated 

Universal Time (UTC). The ground precipitation is accumulated from 00:00 UTC (08:00 Beijing Time) 

of the previous day to 00:00 UTC (08:00 Beijing Time) on the current day. The daily precipitation’s 

statistical time window is inconsistent with the most of the Global Historical Climatology Network 

(GHCN) and Global Surface Summary of the Day (GSOD) datasets, which CHIRPS uses. 

The CN05.1 dataset was interpolated by more than 2400 stations in China, combined with the 

spatial pattern of climatological precipitation and DEM data. The rain gauge stations in CN05.1 
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included the data used in APHRODITE and ITPCAS. Therefore, the CN05.1’s precipitation is chosen 

for grid evaluation.  

CHIRPS used in this study can be downloaded from the University of California, Santa Barbara 

(USA) website (ftp://chg-ftpout.geog.ucsb.edu/pub/org/chg/products/CHIRPS–2.0/global_daily/). 

The CHIRPS is produced in several steps. First, in each pentad of 1998–2012, the IR brightness 

temperature, which cloud top temperature is lower than 235 K, and TRMM 3B42 precipitation is 

modeled by local regression. Second, in each pentad of 1981–2012, the precipitation anomalies is 

calculated by IR-retrieved precipitation (IRP) and its long-term means. Third, the anomalies are 

multiplied with the Climate Hazards Precipitation Climatology (CHPClim) in each pentad. Finally, 

this adjusted IR-retrieved precipitation is blended with surface gauges to produce the final product, 

CHIRPS. In some cases, CFSR Reanalysis data is filled data gaps that are missing IRP values due to 

incomplete satellite coverage. CHIRPS has a horizontal resolution of 0.05° (5.4 km) and spatial 

coverage (50°S–50°N,−180°W–180°E) [24]. Thus, this study chooses the daily CHIRPS QPE from 1981 

to 2014 for reliability assessment, and clips the quasi-global spatial coverage into China mainland 

domain. 

2.3. Methodology for Evaluation  

2.3.1. Statistical Metrics 

The first and most basic statistical metric considered in this study is the PBias [Equation (1)], 

which is defined as: 

1 1
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where SPE and GND denote rainfall amounts from CHIRPS and rain gauges, respectively. In China, 

rain gauge range resolution in the CMA and Ministry of Water Resources is 0.1 and 0.5 mm, 

respectively. In this study, we use 0.5 mm/day as criterion to distinguish rainy days and non-rainy 

days. PBias is calculated when the daily SPE and daily GND are greater than 0.5 mm/day in 1981–

2014. PBias represents a summary statistic bias over the entire dataset. Other statistical metrics helps 

us to gain additional insight into the performance accuracy of CHIRPS QPEs, as follows: 
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The mean error (ME) between CHIRPS and rain gauges data [Equation (2)] is used to assess the 

difference between CHIRPS and rain gauges. The root-mean-square error (RMSE) between CHIRPS 

and rain gauges data [Equation (3)] is used to assess the random error in the CHIRPS product. The 

Pearson correlation coefficient (r) is used to measure the linear correlation between CHIRPS and rain 

gauge data [Equation (4)]. 
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2.3.2. Evaluation Indices 

According to previous work [49], PBias can be decomposed into three parts: Hit PBias (HP), 

Missed PBias (MP), and False Alarm PBias (FP). Hit PBias shows the difference between CHIRPS 

precipitation and the ground rain gauge precipitation, when they both detect daily precipitation of 

over 0.5 mm/day [Equation (5)]. Missed PBias refers to the precipitation detected in the gauge data 

that is undetected by CHIRPS [Equation (6)]. False Alarm PBias denotes the total amount of falsely 

detected precipitation by CHIRPS [Equation (7)]. The formulas are 
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where SPE is CHIRPS’ QPE, and GND is in situ observation. PBias = 0, indicates an unbiased 

estimation whereas PBias < 0 and PBias > 0 indicate underestimation and overestimation, 

respectively. The False Alarm PBias (FP) varies from 0 ≤ FP ≤ 1. The indices mean that CHIRPS has 

precipitation but observation does not. The best score of FP is zero. The Hit PBias (HP) varies from 

−1 ≤ HP ≤ 1. The best score is zero. The Missed PBias (MP) varies from −1 ≤ MP ≤ 0. The indices mean 

that CHIRPS has no precipitation but observation does. The best score of MP is zero. 

3. Results  

3.1. Evaluation of Gridded Observation (CN05.1) with In Situ Point Observation  

Figure 2 shows the monthly r between the CN05.1 precipitation and the rain gauges. It shows 

the number of rain gauge stations in eastern China is higher than those in western China, and the r 

for all of mainland China experiences significant seasonal change. In the first three months of a year 

(January-February-March), the r in eastern China is greater than 0.90, as is the r in northwestern 

China. However, the r in the central China varies in the range 0.40–0.80. The r in coastal areas of 

southern China begins to decrease from above 0.90 to 0.80–0.90 in April. In May, most regions in 

southern China exhibit r values of 0.80–0.90. The r in regions of northern China also decreased to 

0.80–0.90 in June. In July, the r in northeast and central China decreased. In August, the r in south 

China decreased to 0.70–0.80. However, the r in south and northeastern China rebounds and 

increases to values above 0.90. In November and December, the r in central and western China 

decreased to 0.60, the same spatial pattern repeats in January. Generally, the r’s spatio-temporal 

change is related to the Eastern Asian Monsoon’s evolution in the course of a year.  

Upon the onset of the rainy season, southern China receives a significant amount of 

precipitation. The precipitation data interpolated from the gridded observation in a 0.25° grid are 

usually less than that recorded by rain gauges at the same location. Thus, the ME increased and the r 

decreased. In western China west of 105°E, it is assumed that the gridded precipitation in the 

mountainous region is extrapolated by DEM using rain gauges in plain regions. Hence, the 
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precipitation value interpolated from the gridded observation in a 0.25° grid are usually smaller than 

those that were recorded by the rain gauge at the same location. This hypothesis could explain the 

lower r in western China. 

  

Figure 2. Comparison of correlation coefficient(r) between CN05.1’s precipitation and in situ 

observation during 1981–2014. Subplots (a–l) denote the r’s evolution from January and December. 

In northern China, ME of CN05.1 in a year is basically in the range 0–0.1 mm/day in contrast to 

the periodic transition observed in southern China (Figure 3). The ME in southern China indicates 

that the precipitation is underestimated by −0.4 to −0.1 mm/day. In the rainy season (April-

September), the ME in southern China changes by 0.4 to −0.6 mm/day. This means that CN05.1 

overestimates precipitation in southern China. Furthermore, it is found that the ME is randomly 

scattered over mainland China, which is basically due to the method of extrapolation. In the YZR’s 

downstream, the ME always remains in range −0.2 to −0.1 mm/day. Although 0.25° gridded 

observation is derived from rain gauges distributed across mainland China, it is in not complete 

agreement with the spatio-temporal pattern of rain gauges. When using the gridded observation, 

caution should be exercised when conducting evaluations in areas with high ME, especially in 

southern China. 

Generally, CN05.1 has a high r and low ME over the course of a year. In the rainy season (May-

September), the rainfall is underestimated only in southern China. Thus, CN05.1 can be applied to 

evaluate CHIRPS. 
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Figure 3. Comparison of mean error (ME) between CN05.1’s precipitation and in situ observation 

during 1981–2014 (units of mm/day). Subplots (a–l) denote the ME’s evolution from January and 

December. 

3.2. Evaluation of CHIRPS with the Gridded Observation (CN05.1) 

3.2.1. Evaluation on Monthly Scale 

Generally, the r between CHIRPS and CN05.1 in eastern China is higher than that in western 

China, and the r in southern China is also higher than the r in northern China (Figure 4). The regions 

in western China exhibit r values in the range 0.10–0.40 while the regions in eastern China exhibit r 

values of 0.40–0.60. The r values in the consecutive month exhibit a similar evolution pattern on a 

seasonal scale. The change in seasonal cycle can be classified into four groupings as follows: 

December-February, March–April, June–July and August–September. 

In northwestern China (XB), the r exhibits low value zones, which covers the Taklimakan Desert 

(85°E, 38°N) and Tengger Desert (103°E, 38°N). This illustrates that CHIRPS exhibits many false 

alarms and missed hits in these regions. Referring to the evaluation of CMORPH and PERSIANN 

[14], the same low-r belt zone is in these desert regions. This means that QPEs derived from IR or 

microwave sensors perform poorly in less rainy regions, not only CHIRPS QPEs. 
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Figure 4. Correlation coefficient(r) between Climate Hazards Group Infrared Precipitation Satellite 

(CHIRPS)’ precipitation and gridded observation during 1981–2014. Subplots (a–l) denote the r’s 

evolution from January and December. 

In Winter, the ME between CHIRPS and CN05.1 is maintained in the range −0.4 to 0.4 mm/day, 

which is generally positive across mainland China (Figure 5). In January, the ME in the middle part 

of Pearl River is in the range −0.8 to −0.4 mm/day. In regions of XN, the ME in March and April is 

below 2 and above 2 mm/day, respectively. In May, when compared to a ME of below 1.8 mm/day 

in XN, the regions of DN and PR have a ME greater than 1.8 mm/day. In the following June-July-

August, the ME in DN and PR show an increasing trend. During the entire rainy season, it is noticed 

that the southeastern regions of China have strong positive ME, as compared to the significant 

negative ME in southwestern China, although the CHIRPS QPE is corrected using rain gauges in 

China. In the following September-October-November, the spatial pattern of high ME in DN and PR 

decreases. In December, the spatial pattern over all of China is close to that in January. In October-

November, the ME in Hainan Island, the southernmost of mainland China, has negative values. 
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Figure 5. Comparison of mean error (ME) between CHIRPS precipitation and observation during 

1981–2014 (units of mm/day). Subplots (a–l) denote the ME’s evolution from January and December. 

3.2.2. Evaluation of CHIRPS in Sub-Regions 

Table 2 gives the r and ME in hydrologic basin units. First, the rank of r on seasonal cycle is, in 

descending order, Autumn (0.335), Summer (0.325), Spring (0.292) and Winter (0.240). In hydrologic 

basins, the relatively high values of r for a year are located at DN (0.410) and PR (0.411). The lowest 

value of r is in XB (0.150). In Summer and Winter, the r in HAH, YR, HUH, DN, and PR exhibits a 

spatial pattern that indicates that r decreases with increasing latitude. In transition seasons (Spring 

and Autumn), this spatial pattern still exists, but with small variability. In northeast China, a similar 

spatial variability occurs in SHJ and LH. 

The ME is higher in Summer (0.231 mm/day) and Spring (0.071 mm/day) and lower in Autumn 

(0.004 mm/day) and Winter (−0.006 mm/day). In hydrologic basins, the ME in LH (0.088 mm/day), 

DN (0.370 mm/day), XN (0.193 mm/day) and PR (0.115 mm/day) is greater than that in other regions. 

In Autumn, the ME in HUH (−0.111 mm/day), HAH (−0.092 mm/day), DN (0.204 mm/day) and XN 

(0.136 mm/day) is much higher than that in other basins. In winter, the ME in SHJ (−0.039 mm/day), 

LH (0.051 mm/day), HAH (0.013 mm/day) and PR (−0.104 mm/day) is much higher than that in other 

basins. 

Overall, DN and PR exhibit superior values to other basins over the course of a year. In terms of 

these two basins’ locations, they are in coastal regions and near the tropics. Thus, according to the 

limitation of the TRMM precipitation retrieval algorithm analyzed above, it could explain that 

CHIRPS exhibits worse performance in regions of northern China, such as XB, LH and SHJ. 
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Table 2. Seasonal change of Pearson correlation coefficient (r) and mean error (ME) in 10 hydrological 

basins in mainland China. 

Basin 
Spring Summer Autumn Winter Annual 

r ME r ME r ME r ME r ME 

SHJ 0.302 −0.044 0.249 0.085 0.332 −0.024 0.226 −0.039 0.277  −0.006  

LH 0.320 −0.048 0.288 0.324 0.354 0.024 0.158 0.051 0.280  0.088  

XB 0.145 0.018 0.160 −0.138 0.182 −0.040 0.111 0.023 0.150  −0.034  

HAH 0.299 −0.068 0.310 0.071 0.304 −0.111 0.166 0.013 0.270  −0.024  

YR 0.269 −0.003 0.268 0.051 0.326 −0.014 0.206 −0.018 0.267  0.004  

YZR 0.278 0.035 0.336 0.078 0.339 0.011 0.271 −0.034 0.306  0.023  

HUH 0.336 0.053 0.382 0.081 0.327 −0.092 0.296 0.057 0.335  0.025  

DN 0.352 0.460 0.512 0.802 0.415 0.204 0.362 0.013 0.410  0.370  

XN 0.219 0.100 0.272 0.551 0.348 0.136 0.248 −0.017 0.272  0.193  

PR 0.400 0.211 0.472 0.407 0.418 −0.055 0.353 −0.104 0.411  0.115  

3.3. Evaluation of CHIRPS with In Situ Point Observation 

3.3.1. Evaluation on Monthly Scale 

Figure 6 shows PBias in CHIRPS QPEs in January and December, LH’s and HAH's PBias is 

greater than 50% and PR’s and SHJ's PBias is less than −20%. In February-March-April, PBias in HAH 

decreases to −20% and the midstream of YZR’s PBias decreases from 20% to approximately 10%. In 

May-June, PBias in all of the basins fluctuates between −10% and 10%. In July-August-September, 

PBias in eastern China shows an increasing trend. In October, PBias in HAH, HUH, the downstream 

of YZR, and western XB is below −20%. However, PBias in YZR and XB turns positive in November 

with while YR, PR, and HAH exhibit negative values. 

 

Figure 6. Spatial patterns of monthly PBIAS in CHIRPS. Subplots (a–l) show the PBIAS from January 

to December. 
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When comparing Figures 5 with 6, the signs of PBias and the ME are theoretically the same, since 

the gridded observation is derived from surface rain gauges. In Figure 5, the ME over mainland China 

is almost positive over the course of a year, in contrast to the seasonal change of PBias shown in 

Figure 6. In transition months (April, October and November), northern China (HAH) exhibits 

negative PBias, and becomes normal PBias. In Winter, however, PBias in HAH turns positive PBias. 

However, no significant seasonal change is observed in southern China. Therefore, the evaluation 

based on point and grid can be significantly distinguished.  

Figure 7 illustrates the RMSE of CHIRPS precipitation in mainland China. Generally, the spatial 

pattern variability is related to the movement of the East Asian Monsoon. The RMSE of CHIRPS in 

northern China is within 2 mm/day in the non-monsoon period. The RMSE is slightly larger in HAH, 

the midstream of YZR, and eastern XN. In southern China, the RMSE in PR, DN, and the downstream 

of YZR is within 8–12 mm/day from February to April, while the RMSE of CHIRPS in southeastern 

China, which includes the regions PR, DN, and the downstream of YZR, is gradually increased, and 

it is just the beginning of the Meiyu season (i.e., from May to July). In the period May–June, the 

regions of high RMSE expand from the southeastern China to southern China. Meanwhile, it is the 

time that the zones of the Meiyu precipitation belt move to the midstream and downstream of YZR. 

In July–August, the regions of high RMSE reach the northern China, and retreat to southern China in 

September-October. In addition, the Summer wind from the Pacific Ocean becomes weaker when 

compared to the stronger Winter wind from land. In November–December, the value in high-RMSE 

zones decreases to 8–12 mm/day and the same spatial pattern is maintained in January. The RMSE in 

northwest China remains within 2 mm/day. 

 

Figure 7. Spatial patterns of monthly RSME in CHIRPS precipitation (units of mm/day). Subplots (a–

l) denote the RSME’s evolution from January and December.  
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3.3.2. Evaluation of Technical Skill Indices 

Figure 8 explains the missing PBias (MP) in CHIRPS precipitation. Overall, the MP in northern 

China is larger than that in southern China, and the MP in Winter is greater than that in Summer on 

a seasonal scale. In Winter (December-February), the MP in southeastern China is within −50% to 

−30%, in contrast to a MP greater than 70% in most of northern China. In Spring (March-May), the 

MP in southern China increases to −70% to −40%, when compared with a MP in northern China of 

−60% to −30%. In Summer (June-July-August), the MP in southern China decreases to −30% to −10%. 

In Autumn (September-November), the MP in eastern China increases to 20%. 

The midstream of YZR, especially Sichuan Basin (105°E, 30°N), exhibits a large MP over the 

course of a year, except in Summer. In Sichuan Basin, the precipitation usually occurs at time (local 

time), when the surface experiences a strong updraft airflow, creating a convective system that is 

conducive to precipitation. It is difficult to obtain these precipitation conditions, so that the TRMM 

3B42 QPEs have a higher misses [50,51]. As a derivative of TRMM, CHIRPS also exhibits poor 

performance in Sichuan, even though Sichuan is located at the edge of the tropics.  

 

Figure 8. Spatial patterns of monthly missed bias(MP) in CHIRPS precipitation. Subplots (a–l) denote 

the MP’s evolution from January and December. 

Figure 9 shows the Hit-PBias (HP) for CHIRPS. In November–February, the spatial pattern 

basically retains the same spatial distribution. In addition, the HP in the downstream of YR is higher 

and the HP in YR and PR is in the range −20% to −10%. In February-March, the HP (–40% to −10%) in 

southern China and the HP (10% to 40%) in northern China exhibits the reverse spatial distribution. 

In June, the HP in northern China and southern China is in balance. Thereafter in July-August, the 

HP in northern China turns positive. Meanwhile, the HP in southern China begins to decrease. In 

September-October, the HP in southern China and northern China is over 30%. The HP's variability 

in northwest China is relatively steady and is in the range −20% to 10%. 
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In Winter, YR, HAH, LH and SHJ have negative Hit PBias, which means that CHIRPS 

underestimates the snowfall in northern China. Meanwhile, YZR and PR have positive HP, indicating 

that CHIRPS captures the rainfall events, but greatly overestimates the intensity. Subsequently, 

northern China enters the rainy season.  

 

Figure 9. Spatial patterns of monthly hit bias(HP) in CHIRPS precipitation. Subplots (a–l) denote the 

HP’s evolution from January and December. 

False-alarm PBias (FP) is displayed in Figure10. In mainland China, the FP in northern China is 

larger when compared to the FP in southern China. In winter time (December-February), the FP is 

over 80% in HUH and LH. At the same time, the MP in southern China is within 30%. From March 

to June, the difference between the FPs in northern and southern China decreases. In July-August, 

the FP in central China increases to 40%. In September-November, the FP in north China significantly 

arises up. In contrast, the FP does not change significantly in southern China. 

In Winter (December-March), the precipitation in northern China comes mainly in the form of 

snowfall, while in southern China it is rainfall. CHIRPS has a poor ability of detecting snowfall, so 

that more FPs are found in northern China. In XB, especially Xinjiang, the FP pattern is similar to that 

of HAH. 
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Figure 10. Spatial patterns of monthly false bias(FP) in CHIRPS precipitation. Subplots (a–l) denote 

the FP evolution from January and December. 

3.4. Interannual Variation of Statistic Metrics 

Figure 11a shows that the r in 1981–2012 over mainland China can be partitioned into two 

periods: 1981–1997 and 1998–2012. The first period’s r is higher than the second period’s. According 

to the CHIRPS product’s procedure, CHIRPS uses CFSR reanalysis dataset as a background field 

before 1998, which would make CHIRPS’ data quality severe fluctuate between 1997 and 1998. Thus, 

the year of mutation should be 1998, but Figure 11a is shown it is 1997. Generally, HAH presents the 

lowest r versus to LH’s highest r. In 1998–2012, r in all of the basins exhibited a downward trend. 

However, r in 1981–1996 shows no significant trend. 

Figure 11b shows the ME fluctuating across 10 basins in mainland China. Overall, the ME is 

negative, which indicates that CHIRPS underestimated the precipitation in 1981–2012. In addition, 

the trend of negative ME in 10 basins gradually decreases to zero. In 1996, the ME in all the basins 

mutates from negative to positive. The year of the mutation in ME is ahead of the r’s. The ME in XN, 

DN, and PR is larger than other basins’, which indicates that there is a larger ME in the area with 

larger precipitation amount.  
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(a) 

 

(b) 

Figure 11. r (a) and ME (b) ’s variation in CHIRPS, 1981–2012. 

3.5. Evaluation of Precipitation Intensity 

In the rainy season, non-rainy season and all periods, CHIRPS overestimates precipitation 

intensity of <5 mm/day in all of the basins. Especially in the non-rainy season, CHIRPS overestimation 

is more notable than in rainy season and all periods. At the intensity of 20–55 mm/day, CHIRPS 

underestimates in all of the hydrological basins. It is illustrated that CHIRPS has limited ability to 

capture moderate and heavy precipitation, which limits its ability to detect extreme precipitation. In 

Figure 12, both observation and CHIRPS QPE in SHJ (3), LH (6), and XB (9) exhibit severe fluctuations 

in intensity of 20–55 mm/day. These basins have a smaller precipitation amount and lower 

precipitation frequency as compared to other basins in the non-rainy season. However, these basins’ 

precipitation bearing system is distinguished from that in rainy season. In addition, the precipitation 

phase is snowfall in the non-rainy season when compared to rainfall in the rainy season. In terms of 

precipitation intensity, the rainfall intensity of 10–25 mm/day is binned into moderate precipitation, 

but the snowfall intensity of >10 mm/day is called heavy snowfall. Thus, it is improper to compare 

the precipitation intensity in snowfall and rainfall together. 

In the rainy season, the precipitation intensity in all the basins is larger than that in the non-rainy 

season. The annual precipitation’s probability-density-function (PDF) pattern is similar to that in the 
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rainy season, which shows that CHIRPS can present the characteristics of precipitation in intensity 

and frequency over all basins. In previous study, it was found that PERSSIANN-CDR in northern 

China underestimates the precipitation in a year [14]. However, CHIRPS underestimates the intensity 

of 20–55 mm/day in all basins and overestimates the intensity of <5 mm/day in most basins.  

 

(1) 
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(6) 
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Figure 12. CHIRPS’s probability-density-function (PDF) distribution in different temporal and 

spatial scales. The left column (1, 4, 7, 10, 13, 16, 19, 22 ,25, and 28) denotes the ten basin’s PDF in a 

year. The middle column (2, 5, 8, 11, 14, 17, 20, 23, 26, and 29) denotes the ten basin’s PDF in rainy 

season. The right column (3, 6, 9, 12, 15, 18, 21, 24, 27, and 30) denotes the ten basin’s PDF in non-

rainy season. 

Figure 13 demonstrates annual mean daily precipitation. CHIRPS QPE is overestimated 

compared to in situ observation in precipitation intensity less than 1 mm/day, and is underestimated 

when precipitation intensity is more than 1 mm/day. r in all of the river basins is over 0.80 and PBias 

is between −0.13 and −0.0, with min PBias in HAH (−0.050) and max PBias in PR(−0.129). The 
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precipitation intensity in XB(c) is mainly 0–1 mm/day, and in SHJ(a), LH(b), HAH(d), YR(e), and 

XN(h), precipitation intensity is between 1 mm/day and 2 mm/day. The range of precipitation 

intensity in HUH(g), YZR(f), PR(i) and DN(j) is 1.5–2.5, 2–4, 3–6, and 4–6 mm/day, respectively. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 
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Figure 13. CHIRPS’s scatter plots in different river basins. Subplots (a–j) denote the scatter plots in 

sub regions of SHJ, LH, XB, HAH, YR, YZR, HUH, XN, PR, and DN, respectively. 

3.6. Evaluations with Typical Cases 

3.6.1. Snowfall 

In winter, snowfall events seldom occur in southern China. Impacted by La Niña events, most 

regions in southern China suffered the heavy snowfall event on 10 January 2008 (Beijing time) that 

lasted a month. Before the strong snowfall began on 10 January (UTC time), the precipitation belt in 

CHIRPS (Figure14a) covered the midstream and downstream of YZR, which is approximately 8–12 

mm/day. Meanwhile, scattered precipitation of 4–8 mm/day appeared in the downstream of YR. On 

January 11 (UTC time), the precipitation belt (Figure14b) shrank and moved to regions in DN. Figure 

14c shows the gridded observation on January 11, indicating the strong precipitation belt that passed 

across the downstream of YR and YZR, which was greater than 14–20 mm/day. In the midstream of 

YR, the weak precipitation belt was 4–8 mm/day. When compared with observations, the CHIRPS 

precipitation underestimated the daily precipitation intensity and did not estimate the precipitation 

belt in the midstream and downstream of YR and YZR during the extreme snowfall event in 2008. 

All satellite QPE performances are worse in Winter than in Summer [51], and CHIRPS has the same 

performance as other QPEs even in low-latitude regions, yet CHIRPS is derived from the combination 

of IR and microwave sensor’s information, as is PERSIANN. Therefore, only convective precipitation 

in warmer seasons can be characterized by satellite QPE [52,53]. The GPM with new sensors and a 

new retrieval algorithm has the ability to detect the snowfall in Winter, and GPM’s QPEs in Winter 

should be comprehensively validated in the future. 
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(a) 

 

(b) 

 

(c) 

Figure 14. Spatial comparison of observation and CHIRPS precipitation in the form of snowfall. (a) 

and (b) show CHIRPS daily precipitation on 10 and 11 January 2008, respectively. (c) shows the 0.25° 

gridded precipitation observation on 11 January. (units of mm/day). 

3.6.2. Typhoon Events 

Every year, typhoons will make landfall on mainland China in flood season, and bring a mass 

of precipitation to coastal regions. To verify the accuracy of CHIRPS, in this case study we choose 

two well-known typhoon events in recent years. 

Typhoon Saomei originated in the western Pacific Ocean on August 5, 2006. It made landfall in 

the regions of DN on 8 August. Figure 15a shows the spatial pattern of CHIRPS precipitation on 

August 8. The precipitation in CHIRPS covered the regions of PR and the middle and downstream 

of YZR at higher than 16 mm/day. In the intersection between PR and DN, a precipitation belt 

measuring greater than 20 mm/day was detected. Figure 15e shows the observed precipitation. The 

observed precipitation exhibits a spatial pattern similar to CHIRPS in PR and the downstream of 

YZR. On 9 August (UTC time), the CHIRPS precipitation spatial pattern (Figure 15c) was same to 

observed precipitation’s spatial pattern. 

Typhoon Soala originated in the northwest Pacific Ocean on 28 July 2012, and made landfall on 

Fujian Province(DN), China on 2 August. Figure 15b shows that the CHIRPS precipitation in DN and 

HUH was over 20 mm/day. In the view of the observed precipitation (Figure 15f), the precipitation 

belt in midstream of YZR was over 20 mm/day. Overall, the CHIRPS precipitation detected the 

features of Typhoon Soala’s landing event, but the precipitation zones and intensity differ greatly 

from observed precipitation. 

From the above analysis of the two typhoon events, it is found that CHIRPS has the ability to 

characterize the precipitation induced by typhoons in coastal regions. It is also found that CHIRPS 

fails to characterize the spatial pattern of precipitation in northeastern and northwestern China. On 

one hand, the origin model for the precipitation retrieval algorithm in CHIRPS is the TRMM series, 

which is specialized for convective precipitation detection in tropical or sub-subtropical regions in 

warm seasons. Therefore, this algorithm is not suitable for frontal system precipitation in middle-
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latitude regions over northern China. On the other hand, both Figure 15a,e illustrate that the Qilian 

Mountains(100°E, 37°N) experienced moderate rainfall on 8 August, but the gridded observation 

shows more areas experiencing moderate rain than CHIRPS. This could be explained by the fact that 

the two datasets have different resolutions (0.05° grid for CHIRPS and 0.25° grid for CN05.1). 

However, the CN05.1 has a great uncertainties due to a few gauges in Qilian Mountains and 

extrapolating methods. Hence, it is not wise to use gridded observation directly to evaluation high-

resolution QPEs in remote regions lacking rain gauges’ coverage. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 15. Spatial patterns of daily precipitation in two typhoon events. (a,c) show CHIRPS 

precipitation on the first and second days of Typhoon Saomei and (e) is the first day observation for 

Typhoon Saomei. (b,d) show CHIRPS precipitation on the first and second days of Typhoon Soala 

and (f) is the first day observation for Typhoon Soala. (unit: mm/day). 
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4. Discussion and Future Work 

This study has evaluated the high resolution and long-term QPEs of CHIRPS over China for 

forcing datasets application in land surface hydrological models. The limitations and possible sources 

of CHIRPS’ errors is shown as following: 

First, it is found in this study that PBias (Figure 6), MP (Figure 8) and FP (Figure 10) indicate 

CHIRPS in the Sichuan Basin (105°E, 30°N) and Northern China Plain (115°E, 40°N) exhibits poor 

performance compared with adjacent regions in a year, especially in winter. The phenomenon is 

probably related to complex orography induced by great elevation differences. The first procedure 

making in CHIRPS is to make the raw QPE (CHIRP) using the local regression method in a pentad 

with IR’s brightness temperature and TRMM 3B42 QPE. Therefore, it is necessary to consider IR and 

microwave based QPE drawbacks. It is found high rainfall rates related cold clouds, in which the 

cloud top’s temperature is very low [54]. 

In a pentad, CHIRP chooses IR brightness temperature and TRMM 3B42 QPE when the cloud 

top temperature is less than 235K. In the Sichuan Basin (XN) and Northern China Plain (HAH), clouds 

move from western mountains into plains, a process that makes the cloud height lower and the cloud 

top temperature warmer than CHIRP’s threshold, especially in winter time’s frontal bearing system 

(PBias in Figure 6a and MP in Figure 8a). Thus, the cloud top temperature is colder estimated with 

high precipitation, which results in overestimation. On the contrary, when cloud climbs from lower 

land to mountains, the cloud top temperature is higher estimated with lower precipitation, for which 

the orographic process underestimates the precipitation in mountainous areas. The PERSIAN-CDR 

QPEs, one of the IR based QPEs, reveals this kind of underestimation in complex terrain in China [14] 

and eastern Africa [55]. It is the same for microwave radiometer algorithms. The QPEs are estimated 

by signals from cloud ice particles’ scatter. In mountainous areas, the warm cloud created by 

orographic processes contains little ice particles in cloud. Therefore, the QPEs retrieved by microwave 

radiometer algorithms are often underestimated (e.g., the Himalayans [56]). Moreover, the 

precipitation radar carried by the TRMM platform has the valid spatial coverage in 38°N–38°S. 

CHIRPS is derivative of TRMM 3B42 and assumed to have the similar features. In Figure 2, SHJ, LH, 

XB, HAH and northern YR exceeded the TRMM valid spatial coverage, which may be the reason why 

the statistical metrics are poor in Table 2.  

In previous studies, it is noticed that TRMM has better performance in the rainy season than in 

non-rainy season on a temporal scale [16,57]. This can explain the CHIRPS derived from TRMM 

exhibits poor performance in non-rainy season (r in Figure 4 and ME in Figure 5). In addition, TRMM 

3B42 exhibits relatively poor performance on precipitation intensity (e.g., overestimation of heavy 

precipitation in southeastern China and underestimation of light and moderate precipitation in 

northwestern China) [58]. The different versions of TRMM present the similar performance in China 

with the only significant difference being in the Qinghai-Tibet Plateau [59]. TRMM TMPA has higher 

Hit Bias and Missed Bias in humid regions and False Bias in arid regions, especially in Winter [60]. 

The raw CHIRP is derived from TRMM, so these deficiencies can be also found in CHIRPS. The multi 

dataset blending technique, which uses IR based QPEs, microwave based QPEs, radar based QPEs 

and a numerical prediction model’s precipitation as input and blends them in minimum variance, 

can significantly enhance the accuracy of blending precipitation, e.g., MSWEP [61] and CMORPH-

CMA (http://www.cma.gov.cn/2011qxfw/2011qsjgx/). In the future, particularly for creating the 

climatologically long-terms QPEs, the multi datasets and blending technique was a promising 

method in the period before the TRMM era.  

Second, CHIRPS QPEs should be comprehensively evaluated in different spatio-temporal scales. 

In previous studies, TRMM 3B43, which is the monthly QPE derived from TRMM 3B42 with ground 

rain gauges’ calibration, is proved to be prior to daily TRMM 3B42 (e.g., northeastern China [62]). 

This is because 3B43 QPE has been calibrated with an abundance of in situ observation or the gridded 

datasets derived from these in situ observations. If study regions were covered by these calibrated 

stations, the evaluation usually would have better performance and vice versa (e.g., XN and XB). 

From the point of view of spatial scale, previous studies have found that the performance of TRMM 

3B42V7 is superior to GPM IMERGE [63], although GPM IMERGE’s horizontal resolution is higher 
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to 0.10°. Table 3 is CHIRPS upscaled to 0.25° to evaluate with CN05.1. In all 10 river basins, the r in 

0.05° evaluation is higher in 0.25° evaluation, which illustrates that the evaluation at different 

resolutions have significant differences. In future, the performance of CHIRPS on horizontal 

resolution of 0.05° and 0.10° should be give insight into evaluation of spatial scale uncertainty. 

Table 3. Comparison of CHIRPS’ r in resolutions of 0.05° and 0.25°. 

Regions DN HAH HUH LH SHJ YR YZR XN PR XB 

0.05° 0.44 0.34 0.39 0.34 0.33 0.32 0.37 0.37 0.46 0.21 

0.25° 0.41 0.27 0.34 0.28 0.28 0.27 0.31 0.27 0.41 0.15 

Difference 0.03 0.07 0.05 0.06 0.06 0.05 0.06 0.10 0.05 0.06 

Third, in complex terrain over China, rain gauges are usually located in the bottom of valleys 

for the convenience of traffic and easily maintaining losing of sight of precipitation micro-distribution 

(e.g., precipitation spatial distribution on windward and leeward, and the precipitation’s vertical 

distribution.). In mountainous areas, gridded datasets, which are extrapolated by traditionally 

mathematical methods (e.g., IDW, Krieger and Spline) into grids of 0.25° and 0.10°, usually have 

smaller areal precipitation than naturally areal precipitation. Some studies use empirical models with 

DEM extrapolation for precipitation (e.g., The PRISM Climate Group’s PRISM [64]). In terms of the 

non-linear relationship between precipitation and elevation, there are still great uncertainties in 

mountainous areas with scarce rain gauges. Thus, any gridded datasets (e.g., CN05.1 [46], CMAP 

[11], APHRO [45], and ITPCAS [47]) present great uncertainties in complex terrain, which make the 

evaluation with gridded observation less reliable. There, in western China, the grid evaluation with 

CN05.1 has great uncertainty (Figs 4 and 5). In future, it is wise and reliable to evaluate the QPEs only 

when a grid cell covers at least one rain gauge on a different scale. 

Finally, except for traditionally statistical methods for quantitative evaluation, some studies use 

hydrological models [e.g., Coupled routing and excess storage (CREAST) hydrological model [39] 

[40], Variable infiltration capacity (VIC) semi-distributed hydrological model [17,65] to evaluate 

precipitation. This method is suitable for ungauged regions or regions with scarce rain gauges (e.g., 

XB and XN). In future, it will be an effective approach using hydrological models to evaluate CHIRPS 

in multiple scales.  

5. Conclusions  

Satellite QPEs are widely applied in hydrological and ecological research. In this study, we 

compared the daily precipitation estimates from CHIRPS with the data from 2480 rain gauges located 

across China and gridded observation using several statistical metrics in the long terms period 1981–

2014, to find the potential hydro-meteorological application. The main conclusions reached are the 

following: 

1. Limited to the resolution, the gridded observations do not completely agree with the data from 

high-density rain gauge networks across mainland, China, especially in complex terrain areas 

(e.g., XN). Overall, the gridded observation, CN05.1, has an r value above 0.90 over the course 

of a seasonal cycle. However, the evaluation results are quite different when comparing point 

evaluation and grid evaluation. 

2. The CHIRPS precipitation is mainly based on the statistical model based on IR data and TRMM 

3B42’s precipitation in pentad time. In mainland China, the CHIRPS QPEs have better 

performance in DN and PR, in southern China, and poor performance in XB, YR, SHJ, LH, and 

HAH. The ME and RSME exhibits significant variation with seasonal change, which are caused 

by the limitations of TRMM, which is suitable only for tropical regions, not middle-latitude 

regions. Thus, CHIRPS exhibits good performance in southern China. 

3. CHIRPS also exhibits better performance for areas that experience large amounts of precipitation 

(e.g., southern China) as compared to areas characterized by arid and semi-arid land (e.g., 



Remote Sens. 2018, 10, 362 25 of 28 

 

northwest China). In addition, the change in good performance zones change is strongly related 

to monsoon movement. 

4. Generally, the accuracy of CHIRPS is better in warm seasons than in Winter. It has limited ability 

to detect snowfall of any intensity. 

5. CHIRPS is moderately sensitive to the precipitation from typhoon weather systems. 

Acknowledgments: This work is financially supported by the Xinjiang Uygur Autonomous Province’s 

Innovation Project (Grant No. XJGRI2015017), Key Program of National Natural Science Foundation of China 

(Grant No. 91437220), Science & Technology Basic Resources Investigation Program of China (Grant No. 

2017FY100501_5), and National Natural Science Foundation of China (Grant No. 41501301). We acknowledge 

Xinjiang Key Laboratory of Water Cycle and Water Utilization in Arid Area for providing computing resources 

of Cluster Labrador for data processing. We thank Accdon for its linguistic assistance during the preparation of 

this manuscript. 

Author Contributions: Lei Bai wrote this paper, performed the experiments, and analyzed the data. Lanhai Li 

provided technical guidance. Chunxiang Shi collected observation data and provided technical guidance. 

Yanfen Yang revised the paper. Jing Wu provided technical guidance and revised the paper. 

Conflicts of Interest: The authors declare no conflict of interest 

References 

1. Yan, D.-H.; Han, D.-M.; Wang, G.; Yuan, Y.; Hu, Y.; Fang, H.-Y. The evolution analysis of flood and drought 

in Huai River Basin of China based on monthly precipitation characteristics. Nat. Hazards 2014, 73, 849–858. 

2. Correa, S.W.; de Paiva, R.C.D.; Espinoza, J.C.; Collischonn, W. Multi-decadal Hydrological Retrospective: 

Case study of Amazon floods and droughts. J. Hydrol. 2017, 549, 667–684.  

3. Zhang, Q.; Gu, X.; Singh, V.P.; Kong, D.; Chen, X. Spatiotemporal behavior of floods and droughts and 

their impacts on agriculture in China. Glob. Planet. Chang. 2015, 131, 63–72. 

4. Scheel, I.; Hinnerichsen, M. The Impact of Climate Change on Precipitation-related Insurance Risk: A Study 

of the Effect of Future Scenarios on Residential Buildings in Norway. Geneva Pap. Risk Insur. Issues Pract. 

2012, 37, 365–376, doi:10.1057/gpp.2012.7. 

5. Yao, J.; Yang, Q.; Mao, W.; Zhao, Y.; Xu, X. Precipitation trend-Elevation relationship in arid regions of the 

China. Glob. Planet. Chang. 2016, 143, 1–9, doi:10.1016/j.gloplacha.2016.05.007. 

6. Yang, P.; Xia, J.; Zhang, Y.; Hong, S. Temporal and spatial variations of precipitation in Northwest China 

during 1960-2013. Atmos. Res. 2017, 183, 283–295, doi:10.1016/j.atmosres.2016.09.014. 

7. Huffman, G.J.; Adler, R.F.; Bolvin, D.T.; Gu, G.; Nelkin, E.J.; Bowman, K.P.; Hong, Y.; Stocker, E.F.; Wolff, 

D.B. The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor 

precipitation estimates at fine scales. J. Hydrometeorol. 2007, 8, 38–55, doi:10.1175/JHM560.1. 

8. Joyce, R.J.; Janowiak, J.E.; Arkin, P.A.; Xie, P.P. CMORPH: A method that produces global precipitation 

estimates from passive microwave and infrared data at high spatial and temporal resolution. J. 

Hydrometeorol. 2004, 5, 487–503. 

9. Sorooshian, S.; Hsu, K.-l.; Gao, X.; Gupta, H.V.; Imam, B.; Braithwaite, D. Evaluation of PERSIANN System 

Satellite-Based Estimates of Tropical Rainfall. Bull. Am. Meteorol. Soc. 2000, 81, 2035–2046. 

10. Kubota, T.; Shige, S.; Hashizume, H.; Aonashi, K.; Takahashi, N.; Seto, S.; Takayabu, Y.N.; Ushio, T.; 

Nakagawa, K.; Iwanami, K. Global Precipitation Map Using Satellite-Borne Microwave Radiometers by the 

GSMaP Project: Production and Validation. IEEE Trans. Geosci. Remote Sens. 2007, 45, 2259–2275, 

doi:10.1109/TGRS.2007.895337. 

11. Shen, Y.; Zhao, P.; Pan, Y.; Yu, J. A high spatiotemporal gauge-satellite merged precipitation analysis over 

China. J. Geophys. Res. Atmos. 2014, 119, 3063–3075, doi:10.1002/2013JD020686. 

12. Xu, B.; Xie, P.; Xu, M.; Jiang, L.; Shi, C.; You, R. A Validation of Passive Microwave Rain-Rate Retrievals 

from the Chinese FengYun-3B Satellite. J. Hydrometeorol. 2015, 16, 1886–1905, doi:10.1175/JHM-D-14-0143.1. 

13. Hou, A.Y.; Kakar, R.K.; Neeck, S.; Azarbarzin, A.A.; Kummerow, C.D.; Kojima, M.; Oki, R.; Nakamura, K.; 

Iguchi, T. THE GL OBAL PRECIPITATION MEASUREMENT MISSION. Bull. Am. Meteorol. Soc. 2014, 95, 

701–722, doi:10.1175/BAMS-D-13-00164.1. 

14. Guo, H.; Chen, S.; Bao, A.; Hu, J.; Yang, B.; Stepanian, P.M. Comprehensive Evaluation of High-Resolution 

Satellite-Based Precipitation Products over China. Atmosphere 2016, 7, doi:10.3390/atmos7010006. 



Remote Sens. 2018, 10, 362 26 of 28 

 

15. Guo, H.; Chen, S.; Bao, A.; Behrangi, A.; Hong, Y.; Ndayisaba, F.; Hu, J.; Stepanian, P.M. Early assessment 

of Integrated Multi-satellite Retrievals for Global Precipitation Measurement over China. Atmos. Res. 2016, 

176, 121–133, doi:10.1016/j.atmosres.2016.02.020. 

16. Yang, Y.; Luo, Y. Evaluating the performance of remote sensing precipitation products CMORPH, 

PERSIANN, and TMPA, in the arid region of northwest China. Theor. Appl. Climatol. 2014, 118, 429–445, 

doi:10.1007/s00704-013-1072-0. 

17. Tong, K.; Su, F.; Yang, D.; Hao, Z. Evaluation of satellite precipitation retrievals and their potential utilities 

in hydrologic modeling over the Tibetan Plateau. J. Hydrol. 2014, 519, 423–437, 

doi:10.1016/j.jhydrol.2014.07.044. 

18. Wu, L.; Zhai, P. Validation of daily precipitation from two high-resolution satellite precipitation datasets 

over the Tibetan Plateau and the regions to its east. Acta Meteorol. Sin. 2012, 26, 735–745, doi:10.1007/s13351-

012-0605-2. 

19. Li, X.; Zhang, Q.; Xu, C.-Y. Assessing the performance of satellite-based precipitation products and its 

dependence on topography over Poyang Lake basin. Theor. Appl. Climatol. 2014, 115, 713–729, 

doi:10.1007/s00704-013-0917-x. 

20. Li, Z.; Yang, D.; Hong, Y. Multi-scale evaluation of high-resolution multi-sensor blended global 

precipitation products over the Yangtze River. J. Hydrol. 2013, 500, 157–169, 

doi:10.1016/j.jhydrol.2013.07.023. 

21. Jiang, S.H.; Zhou, M.; Ren, L.L.; Cheng, X.R.; Zhang, P.J. Evaluation of latest TMPA and CMORPH satellite 

precipitation products over Yellow River Basin. Water Sci. Eng. 2016, 9, 87–96, doi:10.1016/j.wse.2016.06.002. 

22. Immerzeel, W.W.; Rutten, M.M.; Droogers, P. Spatial downscaling of TRMM precipitation using vegetative 

response on the Iberian Peninsula. Remote Sens. Environ. 2009, 113, 362–370, doi:10.1016/j.rse.2008.10.004. 

23. Jia, S.; Zhu, W.; Lu, A.; Yan, T. A statistical spatial downscaling algorithm of TRMM precipitation based on 

NDVI and DEM in the Qaidam Basin of China. Remote Sens. Environ. 2011, 115, 3069–3079, 

doi:10.1016/j.rse.2011.06.009. 

24. Funk, C.; Peterson, P.; Landsfeld, M.F.; Pedreros, D.; Verdin, J.P.; Rowland, J.; Romero, B.E.; Husak, G.; 

Michaelsen, J.C.; Verdin, A. A Quasi-Global Precipitation Time Series for Drought Monitoring; USGS 

Professional Paper; Data Series 832; U.S. Geological Survey: Reston, VA, USA, 2014. 

25. Paredes-Trejo, F.J.; Barbosa, H.A.; Kumar, T.V.L. Validating CHIRPS-based satellite precipitation estimates 

in Northeast Brazil. J. Arid Environ. 2017, 139, 26–40, doi:10.1016/j.jaridenv.2016.12.009. 

26. Katsanos, D.; Retalis, A.; Michaelides, S. Validation of a high-resolution precipitation database (CHIRPS) 

over Cyprus for a 30-year period. Atmos. Res. 2016, 169, 459–464, doi:10.1016/j.atmosres.2015.05.015. 

27. Mainali, J.; Pricope, N.G. High-resolution spatial assessment of population vulnerability to climate change 

in Nepal. Appl. Geogr. 2017, 82, 66–82, doi:10.1016/j.apgeog.2017.03.008. 

28. Tuo, Y.; Duan, Z.; Disse, M.; Chiogna, G. Evaluation of precipitation input for SWAT modeling in Alpine 

catchment: A case study in the Adige river basin (Italy). Sci. Total Environ. 2016, 573, 66–82, 

doi:10.1016/j.scitotenv.2016.08.034. 

29. Tote, C.; Patricio, D.; Boogaard, H.; van der Wijngaart, R.; Tarnavsky, E.; Funk, C. Evaluation of Satellite 

Rainfall Estimates for Drought and Flood Monitoring in Mozambique. Remote Sens. 2015, 7, 1758–1776, 

doi:10.3390/rs70201758. 

30. Guo, H.; Bao, A.; Liu, T.; Ndayisaba, F.; He, D.; Kurban, A.; Maeyer, P. de. Meteorological Drought Analysis 

in the Lower Mekong Basin Using Satellite-Based Long-Term CHIRPS Product. Sustainability 2017, 9, 

doi:10.3390/su9060901. 

31. Sun, R.; Yuan, H.; Liu, X.; Jiang, X. Evaluation of the latest satellite-gauge precipitation products and their 

hydrologic applications over the Huaihe River basin. J. Hydrol. 2016, 536, 302–319, 

doi:10.1016/j.jhydrol.2016.02.054. 

32. Guo, H.; Chen, S.; Bao, A.; Hu, J.; Gebregiorgis, A.S.; Xue, X.; Zhang, X. Inter-Comparison of High-

Resolution Satellite Precipitation Products over Central Asia. Remote Sens. 2015, 7, 7181–7211, 

doi:10.3390/rs70607181. 

33. Hirpa, F.A.; Gebremichael, M.; Hopson, T. Evaluation of High-Resolution Satellite Precipitation Products 

over Very Complex Terrain in Ethiopia. J. Appl. Meteorol. Climatol. 2010, 49, 1044–1051, 

doi:10.1175/2009JAMC2298.1. 



Remote Sens. 2018, 10, 362 27 of 28 

 

34. Tan, M.L.; Ibrahim, A.L.; Duan, Z.; Cracknell, A.P.; Chaplot, V. Evaluation of Six High-Resolution Satellite 

and Ground-Based Precipitation Products over Malaysia. Remote Sens. 2015, 7, 1504–1528, 

doi:10.3390/rs70201504. 

35. Katsanos, D.; Lagouvardos, K.; Kotroni, V.; Huffmann, G.J. Statistical evaluation of MPA-RT high-

resolution precipitation estimates from satellite platforms over the central and eastern Mediterranean. 

Geophys. Res. Lett. 2004, 31, doi:10.1029/2003GL019142. 

36. Huang, Y.; Chen, S.; Cao, Q.; Hong, Y.; Wu, B.; Huang, M.; Qiao, L.; Zhang, Z.; Li, Z.; Li, W.; et al. Evaluation 

of Version-7 TRMM Multi-Satellite Precipitation Analysis Product during the Beijing Extreme Heavy 

Rainfall Event of 21 July 2012. Water 2014, 6, 32–44, doi:10.3390/w6010032. 

37. Pena-Arancibia, J.L.; van Dijk, A.I.; Renzullo, L.J.; Mulligan, M. Evaluation of Precipitation Estimation 

Accuracy in Reanalyses, Satellite Products, and an Ensemble Method for Regions in Australia and South 

and East Asia. J. Hydrometeorol. 2013, 14, 1323–1333, doi:10.1175/JHM-D-12-0132.1. 

38. Tan, M.L.; Duan, Z. Assessment of GPM and TRMM Precipitation Products over Singapore. Remote Sens. 

2017, 9, doi:10.3390/rs9070720. 

39. Xue, X.; Hong, Y.; Limaye, A.S.; Gourley, J.J.; Huffman, G.J.; Khan, S.I.; Dorji, C.; Chen, S. Statistical and 

hydrological evaluation of TRMM-based Multi-satellite Precipitation Analysis over the Wangchu Basin of 

Bhutan: Are the latest satellite precipitation products 3B42V7 ready for use in ungauged basins? J. Hydrol. 

2013, 499, 91–99, doi:10.1016/j.jhydrol.2013.06.042. 

40. Chen, Z.; Qin, Y.; Shen, Y.; Zhang, S. Evaluation of Global Satellite Mapping of Precipitation Project Daily 

Precipitation Estimates over the Chinese Mainland. Adv. Meteorol. 2016, doi:10.1155/2016/9365294. 

41. Zhang, X.; Tang, Q. Combining satellite precipitation and long-term ground observations for hydrological 

monitoring in China. J. Geophys. Res-Atmos. 2015, 120, 6426–6443, doi:10.1002/2015JD023400. 

42. Zhang, X.; Cong, Z. Trends of precipitation intensity and frequency in hydrological regions of China from 

1956 to 2005. Glob. Planet. Chang. 2014, 117, 40–51, doi:10.1016/j.gloplacha.2014.03.002. 

43. Zhou, T.; Wu, B.; Scaife, A.A.; Broennimann, S.; Cherchi, A.; Fereday, D.; Fischer, A.M.; Folland, C.K.; Jin, 

K.E.; Kinter, J.; et al. The CLIVAR C20C project: which components of the Asian-Australian monsoon 

circulation variations are forced and reproducible? Clim. Dyn. 2009, 33, 1051–1068, doi:10.1007/s00382-008-

0501-8. 

44. Bothe, O.; Fraedrich, K.; Zhu, X. Precipitation climate of Central Asia and the large-scale atmospheric 

circulation. Theor. Appl. Climatol. 2012, 108, 345–354, doi:10.1007/s00704-011-0537-2. 

45. Yatagai, A.; Kamiguchi, K.; Arakawa, O.; Hamada, A.; Yasutomi, N.; Kitoh, A. APHRODITE Constructing 

a Long-Term Daily Gridded Precipitation Dataset for Asia Based on a Dense Network of Rain Gauges. Bull. 

Am. Meteorol. Soc. 2012, 93, 1401–1415, doi:10.1175/BAMS-D-11-00122.1. 

46. Wu, J.; Gao, X.-J. A gridded daily observation dataset over China region and comparison with the other 

datasets. Chin. J. Geophys.-Chin. 2013, 56, 1102–1111, doi:10.6038/cjg20130406. (In Chinese) 

47. Yang, K.; He, J.; Tang, W.; Qin, J.; Cheng, C.C.K. On downward shortwave and longwave radiations over 

high altitude regions: Observation and modeling in the Tibetan Plateau. Agric. For. Meteorol. 2010, 150, 38–

46, doi:10.1016/j.agrformet.2009.08.004. 

48. Han, Z.; Zhou, T. Assessing the Quality of APHRODITE High-Resolution Daily Precipitation Dataset over 

Contiguous China. Chin. J. Atmos. Sci. 2012, 36, 361–373, doi:10.3878/j.issn.1006-9895.2011.11043. (In 

Chinese) 

49. Tian, Y.; Peters-Lidard, C.D.; Eylander, J.B.; Joyce, R.J.; Huffman, G.J.; Adler, R.F.; Hsu, K.-L.; Turk, F.J.; 

Garcia, M.; Zeng, J. Component analysis of errors in satellite-based precipitation estimates. J. Geophys. Res.-

Atmos. 2009, 114, doi:10.1029/2009JD011949. 

50. Yang, Y.; Cheng, G.; Fan, J.; Sun, J.; Weipeng, L. Accuracy validation of TRMM 3B42 data in Sichuan basin 

and the surrounding areas. J. Meteorol. Sci.-Chin. 2013, 5, 526–535, doi:10.3969/2012jms.0154. (In Chinese) 

51. Qin, Y.; Chen, Z.; Shen, Y.; Zhang, S.; Shi, R. Evaluation of Satellite Rainfall Estimates over the Chinese 

Mainland. Remote Sens. 2014, 6, 11649–11672, doi:10.3390/rs61111649. 

52. Gottschalck, J.; Meng, J.; Rodell, M.; Houser, P. Analysis of multiple precipitation products and preliminary 

assessment of their impact on global land data assimilation system land surface states. J. Hydrometeorol. 

2005, 6, 573–598, doi:10.1175/JHM437.1. 

53. Tian, Y.; Peters-Lidard, C.D. A global map of uncertainties in satellite-based precipitation measurements. 

Geophys. Res. Lett. 2010, 37, doi:10.1029/2010GL046008. 



Remote Sens. 2018, 10, 362 28 of 28 

 

54. Maidment, R.I.; Grimes, D.; Allan, R.P.; Tarnavsky, E.; Stringer, M.; Hewison, T.; Roebeling, R.; Black, E. 

The 30 year TAMSAT African Rainfall Climatology and Time series (TARCAT) data set. J. Geophys. Res.-

Atmos. 2014, 119, 10619–10644, doi:10.1002/2014JD021927. 

55. Kimani, M.W.; Hoedjes, J.C.B.; Su, Z. An Assessment of Satellite-Derived Rainfall Products Relative to 

Ground Observations over East Africa. Remote Sens. 2017, 9, doi:10.3390/rs9050430. 

56. Bharti, V.; Singh, C. Evaluation of error in TRMM 3B42V7 precipitation estimates over the Himalayan 

region. J. Geophys. Res.-Atmos. 2015, 120, 12458–12473, doi:10.1002/2015JD023779. 

57. Zeng, H.; Li, L.; Hu, J.; Liang, L.; Li, J.; Li, B.; Zhang, K. Accuracy validation of TRMM Multisatellite 

Precipitation Analysis daily precipitation products in the Lancang River Basin of China. Theor. Appl. 

Climatol. 2013, 112, 389–401, doi:10.1007/s00704-012-0733-8. 

58. Zhao, T.; Yatagai, A. Evaluation of TRMM 3B42 product using a new gauge-based analysis of daily 

precipitation over China. Int. J. Climatol. 2014, 34, 2749–2762, doi:10.1002/joc.3872. 

59. Chen, S.; Hong, Y.; Cao, Q.; Gourley, J.J.; Kirstetter, P.-E.; Yong, B.; Tian, Y.; Zhang, Z.; Shen, Y.; Hu, J.; et 

al. Similarity and difference of the two successive V6 and V7 TRMM multisatellite precipitation analysis 

performance over China. J. Geophys. Res.-Atmos. 2013, 118, 13060–13074, doi:10.1002/2013JD019964. 

60. Yong, B.; Chen, B.; Tian, Y.; Yu, Z.; Hong, Y. Error-Component Analysis of TRMM-Based Multi-Satellite 

Precipitation Estimates over Mainland China. Remote Sens. 2016, 8, doi:10.3390/rs8050440. 

61. Beck, H.E.; van Dijk, Albert, I.J.M.; Levizzani, V.; Schellekens, J.; Miralles, D.G.; Martens, B.; de Roo, A. 

MSWEP: 3-hourly 0.25 degrees global gridded precipitation (1979–2015) by merging gauge, satellite, and 

reanalysis data. Hydrol. Earth Syst. Sci. 2017, 21, 589–615, doi:10.5194/hess-21-589-2017. 

62. Cai, Y.; Jin, C.; Wang, A.; Guan, D.; Wu, J.; Yuan, F.; Xu, L. Comprehensive precipitation evaluation of 

TRMM 3B42 with dense rain gauge networks in a mid-latitude basin, northeast, China. Theor. Appl. Climatol. 

2016, 126, 659–671, doi:10.1007/s00704-015-1598-4. 

63. Yuan, F.; Zhang, L.; Win, K.W.W.; Ren, L.; Zhao, C.; Zhu, Y.; Jiang, S.; Liu, Y. Assessment of GPM and 

TRMM Multi-Satellite Precipitation Products in Streamflow Simulations in a Data-Sparse Mountainous 

Watershed in Myanmar. Remote Sens. 2017, 9, doi:10.3390/rs9030302. 

64. Daly, C.; Neilson, R.; L. Phillips, D. A Statistical-Topographic Model for Mapping Climatological 

Precipitation Over Mountain Terrain. J. Appl. Meteorol. 1994, 33, 140–158, doi:10.1175/1520-

0450(1994)033<0140:ASTMFM>2.0.CO;2. 

65. Hao, Z.-C.; Tong, K.; Liu, X.-L.; Zhang, L.-L. Capability of TMPA products to simulate streamflow in upper 

Yellow and Yangtze River basins on Tibetan Plateau. Water Sci. Eng. 2014, 7, 237–249, 

doi:10.3882/j.issn.1674-2370.2014.03.001. 

© 2018 by the authors. Submitted for possible open access publication under the  

terms and conditions of the Creative Commons Attribution (CC BY) license 

(http://creativecommons.org/licenses/by/4.0/). 


