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Abstract—Leaf area index (LAI) is a significant biophysical 
parameter used in many agronomic and ecological models.  In 
comparison with satellite remote sensing, unmanned aerial 
vehicles(UAV) technology can obtain imagery with high spatial 
resolution for better accuracy of LAI estimation. This study 
conducted global sensitivity of input variables in PROSAIL 
model by the extended Fourier amplitude sensitivity test 
(EFAST) method and determined the most sensitive bands and 
vegetation indices (VIs) to LAI. Estimation accuracy of five 
input variable combinations in cost-functions was compared. 
Results of global sensitivity analysis show that green and red 
band are sensitive to LAI, and the correlation coefficient 
between measured LAI and estimated LAI from combination 
of these two bands as input variables in cost-functions is 0.85. 
For VIs, the most sensitive input variables are LAI, average 
leaf angle(ALA) and chlorophyll content(Chl). VIs of NDVI, 
RVI and MSR are sensitive to LAI with corresponding total 
sensitivity of 0.80, 0.69 and 0.72 respectively. The correlation 
coefficient between measured LAI and estimated LAI from VIs 
is over 0.75, indicating that it may be an alternative way for 
LAI inversion in PROSAIL model through LUT method. 
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I. INTRODUCTION  
Leaf area index (LAI) is considered to be a significant 

biophysical variable of ecosystem processes[1], used in 
numerous hydrological, agricultural, meteorological and 
ecological models[2]. Current technology and management 
techniques such as reasonable LAI estimation are important 
to quantify crop variability[3] and monitor crop growth in 
terms of precision farming. Manual methods for LAI 
measurement are time consuming and destructive, while 
remote sensing has shown the great potential for quickness 
and timeliness. Satellite-derived information is extensively 
used in land cover and biome type mapping, estimation and 
monitoring of vegetation biophysical and biochemical 
variables, such as LAI, chlorophyll content and chlorophyll 
fluorescence. However, owing to the high cost of data 
acquisition, coarse spatial resolution and dependence on 
weather condition, the application of satellite-derived 
information for precision farming is limited[4]. Unmanned 
aerial vehicle (UAV), as a low altitude remote sensing 
platform, is able to estimate LAI in agronomic research at 
large scales[5], thanks to the higher spatial and temporal 
resolution than satellites[6]. 

Statistical and physical methods are two main 
approaches for LAI estimation from satellite-derived remote 
sensing images[7]. Statistical methods are based on 
regression models between spectral vegetation indices (VIs) 

and measured LAI in situ, and the other is the inversion of 
input variables in the radiative transfer models(RTMs). 
PROSAIL model is one of the RTMs[8], which combines 
the PROSPECT leaf model and the SAILH canopy 
bidirectional reflectance model[9]. It is the most used due to 
the general robustness and ease of usage.  

Because of complexity and magnanimity of earth 
surface, properties and principles observed at the scale of 
remote sensing by satellites may not be applicable at the 
scale of UAV remote sensing[10], so it is necessary to test 
the applicability of existing methods. Most of studies focus 
on global sensitivity analysis of bands to input variables in 
the PROSAIL model; however, little attention has been paid 
to the global sensitivity of VIs to model input variables. In 
addition, most of studies utilize single bands instead of VIs 
as input variables in cost-functions when using look-up-
table(LUT) method for LAI inversion.  

 The objectives of this study are twofold: (1) to conduct 
global sensitivity analysis of bands and VIs to input 
variables in PROSAIL model, and determine the most 
sensitive ones for LAI inversion; and (2) to compare the 
accuracy of LAI estimation from different input variables as 
the constraints in cost-functions when using LUT approach. 

II. MATERIAL AND METHODS  

A. Study area overview 
The study site is located at Yucheng Trial Station of 

Chinese Academic of Science (36°49’N,116°34’E), west 
Shandong Province in China. The regional climate is 
categorized as a warm temperate and semi-humid monsoon 
climate zone with annual mean temperature of 13.1  and 
average annual precipitation of 593.2 mm, mainly from July 
to September. Winter wheat was planted in the field. 

Due to different nutrient (nitrogen, phosphorus and 
potassium) and water treatment among fields (Fig. 1), LAI 
measured in situ (Fig. 2), NDVI value based on UAV remote 
sensing images in the study area were relatively different, 
indicating significant spatial heterogeneity of crop growth. 
Therefore, the study area was feasible for LAI estimation of 
winter wheat from UAV remote sensing imagery[9].  

B. Data sources and processing 
In this field experiment, a Swiss SenseFly eBee Ag 

agricultural fixed wing UAV served as the aerial carrier 
platform to conduct sensor management, equipped with a 
Multi-SPEC 4C camera which has four separate 1.2MP 
sensors including four band data: green band (550nm), red 
band (660nm), red-edge band (735nm) and near infrared red 
band (NIR) (790nm). 



 Two UAV flight tests were conducted on 11th of May, 
2016 and 22nd of April, 2017 when it was the filling stage 
and the heading stage of winter wheat in each year 
respectively. To rule out the effect of weather, tests were 
performed at cloudless noon. Before each flight, whiteboard 
data was collected for later radiation correction. Radiation 
correction, image splice and orthography of UAV remote 
sensing images were conducted by Pix4D Mapper Pro 3.1.22. 
Each flight test produced around 700 images of four bands 
totally over all experimental plots, with spatial resolution of 
approximately 0.10m. The projection mode for data 
processing was UTM/WGS84. LAI value in situ was 
collected by destructive method within three days of the 
flight test, and determined in laboratory. 

 
Fig.1 Location of study area and experimental field 

 
Fig. 2 Frequency distribution of LAI value in situ 

C. Method 
The PROSAIL model is commonly applied to describe 

the reflection characteristics of a uniform canopy[11] 
derived from the combination of PROSPECT blade model 
and the SAILH canopy structure model. The PROSPECT 
model simulates the optical properties of leaves, from 
400nm to 2500nm, including four parameters: leaf structure 
index (N), chlorophyll content (Chl), leaf water mass per 
area (LMA) and blade equivalent thickness (EWT). The 

SAILH model is a radiative transfer model on the canopy 
scale. In SAILH model, vegetation is treated as a mixed 
medium, with the assumption that the blade azimuth 
distribution is uniform. The absorption and scattering 
coefficients of arbitrary blade inclination distribution are 
calculated by using the obliquity distribution function as the 
weight, and the effects of blade size and shadow on the 
coefficients of absorption and scattering are taken into 
account. The SAIL model includes 8 input parameters: LAI, 
average leaf angle (ALA), soil reflectance (psoil), hot spot, 
solar zenith and azimuth, observational zenith and azimuth. 

Sensitivity analysis is a qualitative or quantitative 
impact analysis of input variables on model outcome. The 
change of sensitive input variable value often causes 
significant variation of model outcome, whereas the 
insensitive ones do not. The global sensitivity analysis 
identifies the effect of each input variable and the 
interaction between them on the model outcome. This study 
performed the extended Fourier amplitude sensitivity test 
(EFAST) method to test global sensitivity analysis of the 
input variable in the PRPOSAIL model. Many studies have 
conducted global sensitivity analysis of single bands to 
input variables and have used several single bands as input 
variable of cost-functions in LUT method to inverse LAI; 
however, very few used VIs for that purpose.  

In order to determine the optimal VI for LAI inversion 
of winter wheat, this study selected 12 commonly used VIs 
according to the wave band of the sensor (Table I). 

 
TABLE I. COMMONLY USED VEGETATION INDICES AND 

FORMULAS 
 

VIs Abbr. Formula 
Enhanced Vegetation 
Index without the blue 

band 

EVI2 2.5(NIR–R)/(NIR+2.4R+1) 

Normalized Difference 
Vegetation Index 

NDVI (NIR–R)/(NIR+R) 

Green Normalized 
Difference Vegetation 

Index 

GNDVI  (NIR–G)/(NIR+G) 

Ratio Vegetation Index RVI NIR/R 
Modified Secondary 

Soil Adjusted 
Vegetation Index 

MSAVI2 0.5{(2NIR+1)-sqrt[(2NIR+1)2-
8(NIR-R)]} 

Optimized Soil 
Adjusted Vegetation 

Index 

OSAVI (NIR–R)/(NIR+R+0.16) 

Soil Adjusted 
Vegetation Index 

SAVI  (1+L) (NIR–R)/(NIR+R+L) 
(L=0.5) 

Modified Chlorophyll 
Absorption Ratio Index 

MCARI 1.5[2.5(NIR-R)-1.3(NIR-G)]/ 
sqrt[(2NIR+1)2-6(NIR-5R)-0.5] 

Modified Triangular 
Vegetation Index 

MTVI1 1.2[1.2(NIR-G)-2.5(R-G)]  

Modified Simple Ratio MSR (NIR/R-1)/sqrt(NIR/R+1) 
Triangular Vegetation 

Index 
TVI 0.5(120(NIR-G))-200(R-G) 

Difference Vegetation 
Index 

DVI NIR-R 

Note: G is green band, R is red band, NIR is near infrared red band 

 
Since the underlying surface only included crops and 

soil, VIs value of each field block was calculated from the 
mean value of the total pixels. The linear regression analysis 
was carried out between the estimated LAI and measured 
LAI, and model was evaluated by the correlation 



coefficient(r), the root mean square error(RMSE) and the 
mean relative error(MRE). 

              (1) 

                 (2) 
Where, i represents the serial number of the sample. Yi 

and Ei represent measured LAI and estimated LAI of the i th 
sample respectively.  

LUT is commonly used in LAI inversion due to its 
simplicity and rapidity. As shown in Table II, value of input 
variables in PROSAIL model was set from the priority 
information, such as the LOPEX’93 database, related studies 
and the in situ  measurements. Besides Chl and LAI, values 
of other input variables were set to constants. The numerical 
range of LAI value is 0.2 to 5, with step size value of 0.01; 
and the numerical range of Chl value is 20 to 70, with step 
size value of 1. LUT was sorted in terms of cost-functions as 
formula (3) and (4), and LAI was inversed by minimizing the 
value of cost-functions. 

TABLE.II VALUE OF THE INPUT VARIABLES FOR THE PROSAIL 
MODEL TO GENERATE LUT  

Variable Abbr. Unit Value 

Leaf structure parameter N Unitless 1.5 

Leaf chlorophyll content  Chl μg·cm-2 20-70 
(step:1) 

Leaf carotenoid content caro μg·cm-2 10 

Brown pigment content  brown arbitrary units 0 

Blade equivalent thickness  EWT cm 0.01 

Leaf water mass per area LMA g·cm-2 0.005 

Soil brightness parameter psoil Unitless 0.1 

Leaf area index LAI m2 m-2 0.2-5 
(step:0.01) 

Hot-spot size parameter hot spot m m-1 0.2 

Solar zenith angle () - degrees 20 

Solar azimuth angle - degrees 185 

View zenith angle - degrees 0 

View azimuth angle - degrees 0 

Average leaf angle ALA Deg 70 

 

 (3) 

(4) 
Where, Rmeasured is the measured value from UAV 

imagery; Rsimulated is the simulated value calculated from the 
PROSAIL model, and n is the number of bands or VIs as 
input variables of cost-functions when using LUT method. 

III. RESULTS AND DISCUSSIONS 

A. Global sensitivity analysis of the single bands to input 
variables in PROSAIL model 
Fig.3 is the scatter graph between four bands and the 

measured LAI. It displays the significant variation of band 
reflectance in field blocks, especially the red-edge band. 
Variation of band reflectance indicated differences in crop 
growth as a result of different growing seasons, climate and 
environmental condition. Table. III displays correlation 
coefficient between single bands and measured LAI. It 
shows the reflectance of green band and red band are 
positively correlated with measured LAI. The annual 
reflectance of red edge band in 2016 and 2017 is almost not 
correlated with LAI, while the total reflectivity of this band 
is positively correlated with LAI. However, the trend of NIR 
band is the opposite. The reason could be that the sensitivity 
of different bands to the change of measured LAI is 
distinguishing. Owing to highly instable reflectivity of the 
single bands, they aren’t applicable for LAI estimation. Yue 
et.al pointed out that single band for extraction of crop 
information had obvious limitations. For example, the 
reflectance information of a single band is affected by 
atmospheric and surrounding environment easily, so it is 
difficult to obtain the true value [6].  

 
Fig.3 Scatter graph between the single band and measured LAI. 

TABLE III. CORRELATION COEFFICIENT BETWEEN BANDS AND 
MEASURED LAI 

 
Year Green Red Red-edge NIR 

2016 -0.83 -0.81 -0.01 0.48 

2017 -0.72 -0.63 0.17 0.70 

total -0.78 -0.75 0.62 0.12 

 

EFAST method holds that the variance of model output 
is caused by input variables and their interactions. Value of 
the first-order sensitivity implies the direct contribution rate 



of input variables to the total variance of the model output. 
The total sensitivity includes the first-order sensitivity and 
the indirect contribution of interaction among input variables 
to the total variance of the model output. As displayed in 
Fig.4, results of the first-order sensitivity analysis show that 
the green band is sensitive to Chl, N and ALA. The red band 
is sensitive to LAI, Chl and ALA, while the red-edge band is 
sensitive to LAI and ALA, and NIR band is sensitive to 
LMA, ALA and LAI. Results of the total sensitivity analysis 
are similar to those of the first-order sensitivity. It shows that 
the green band is sensitive to Chl, N and ALA; The red band 
is sensitive to N, LAI, and Chl; The red-edge band is 
sensitive to LMA, ALA and Chl; and NIR band is sensitive 
to LMA, ALA and LAI. In this study, results of global 
sensitivity analysis are similar to other studies. For 
instance, Rasmus Houborg et al pointed out that green and 
red-edge bands are sensitive to the change of chlorophyll 
content [12] . Aleixandre Verger et al also held that the red-
edge band is applicable for the estimation of chlorophyll 
content[13].  

 
Fig.4 Global sensitivity Analysis of single band and VIs to input variables 

of PROSAIL model through EFAST method 

B. Global sensitivity analysis of VIs to input variables in 
PROSAIL model 

Since VIs can offset part of single band error from 
surrounding environment to obtain better vegetation 
information, this study used VIs as input variables of cost-
functions. Based on the results of global sensitivity analysis 
of VIs to input variables of PROSAIL model(Part C), NDVI, 
RVI and MSR were selected. The correlation coefficient 
between these three VIs and measured LAI were shown in 

Table VI. Fig.5 is the scatter graph between VIs and 
measured LAI. Comparing the results of correlation analysis 
in 2016 and 2017, the correlation coefficient is more stable, 
less fluctuating and higher than those between bands and 
LAI(Part A). So it may be an alternative way to use VIs than 
single bands for LAI estimation. 

Fig. 4 also displays the global sensitivity of VIs to 
input variables. The first-order and total sensitivity have 
the similar trend. Both of them suggest the most sensitive 
input variables for VIs are LAI, ALA and Chl, while the 
other input variables are weakly sensitive. Among the 
whole VIs, MSR, NDVI, RVI and GNDVI are not 
sensitive to ALA but sensitive to LAI and Chl. However, 
GNDVI is ruled out since its less sensitive to LAI but more 
sensitive to Chl with sensitivity value of 0.37 and 0.38 
respectively. So NDVI, MSR and RVI are selected as the 
input variables of cost-functions to inverse LAI via LUT 
method.  

 

 
Fig. 5 Scatter graph between VIs and measured LAI 

TABLE VI. CORRELATION COEFFICIENT BETWEEN VEGETATION 
INDICES AND MEASURED LAI 

Year NDVI MSR RVI 

2016 0.72 0.82 0.82 
2017 0.80 0.80 0.76 
total 0.76 0.80 0.81 

 

C. LAI inversion based on LUT method 
In order to compare different input variables of the cost-

functions, this study selected five groups: (1) three VIs 
(NDVI,RVI,MSR); (2) green, red, red-edge and NIR bands; 
(3) green and red bands; (4) red and NIR bands; (5) green, 
red and red-edge bands. Table.V demonstrated the 
correlation coefficients value between estimated LAI and 
measured LAI.  In this study, the inversion accuracy of group 
(3) is the highest, with the correlation coefficients value of 
0.85 and lowest value of RMSE and MRE. Estimation 
accuracy of group (1) ranks the second. These three VIs in 



group (1) are only calculated from the red and NIR band. 
Compared with group (3), correlation coefficients of group 
(2) is higher, which indicates that the LAI estimation 
accuracy of VIs as the input variables of cost-functions is 
better than that of the single bands when the bands used are 
the same. Red-edge band is ruled out in group (5), since the 
correlation coefficient between this band and LAI is poor. 
Contrasting group (2) and (3), or group (3) and (5), the 
number of bands isn’t necessary for the higher estimation 
accuracy,  but the applicability of bands for LAI inversion.  

As Table.V shows, the estimation accuracy of various 
cost-functions is different. Accuracy of χRMSE cost-function is 
better than that of χRRMSE cost-funciton when VIs are the 
input variables, but there is no significant difference to group 
(3). Fig. 6 is the scatter plot of the measured LAI and 
estimated LAI. It can be seen from the plot that the estimated 
LAI was significantly higher than the measured LAI. The 
destructive sampling method only measured the area of 
leaves, neglecting the stems and spikes of wheat. However, 
LAI information obtained from aerial remote sensing images 
includes leaves, stems and spikes of wheat, therefore, the 
measured LAI value was lower. 

TABLE V.   DIFFERENT CONSTRAINTS IN COST-FUNCTIONS OF 
LUT METHOD FOR LAI INVERSION  

 (1) VIs (2) G+R+E+NIR 
Cost-function χRRMSE χRMSE χRRMSE χRMSE 

r 0.76 0.78 -0.20 0.18 
RMSE 1.22 1.19 2.37 2.73 
MRE 1.17 1.15 2.77 3.25 
(3) G+R (4) R+NIR (5) G+R+NIR 
χRRMSE χRMSE χRRMSE χRMSE χRRMSE χRMSE 

0.85 0.85 0.42 0.18 0.29 0.18 
0.82 0.82 2.41 2.73 2.61 2.73 
0.41 0.41 2.59 3.25 3.02 3.25 

Note: G is green band, R is red band, E is the red-edge band, NIR is near infrared red band 

 
Fig.6 Comparison between measure LAI in situ and the estimated LAI when 

VIs are the input variables of cost-functions 

IV. CONCLUSION 
Global sensitivity analysis of PROSAIL model is of great 

significance to the inversion of LAI when using LUT method 
due to the complication of obtaining all input variables value 
in model. In this study, for the single band, results of the 
EFAST global sensitivity analysis show that green and red 
bands are sensitive to LAI. The group including these two 
bands as the input variables of cost-functions is applicable 
for LAI inversion, with the higher correlation coefficients 
and lower RMSE and MRE. For the VIs in this study,  the 
most sensitive input variables of PROSAIL model are LAI, 

ALA and Chl. VIs of MSR, RVI and NDVI are considerably 
more sensitive to LAI than Chl and relatively insensitive to 
ALA. Estimated LAI from LUT method with NDVI, MSR 
and RVI as input variables of cost-functions is positively 
correlated to measured LAI, with correlation coefficient 
value over 0.75, indicating that it may be an alternative way 
to inverse LAI.  
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