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The rates of temporal and spatial species turnover have been compared in different 
organisms and scales, revealing that both are not independent but, rather, associated. 
However, the knowledge is limited for the association between spatial turnover and 
temporal turnover. Here, we performed two investigations of the phytoplankton com-
position in the lakes of the Yangtze River catchment in China in the spring and summer 
of 2012, which covered regional spatial scale and two-season temporal scale. We anal-
ysed the association between temporal and spatial species turnover in phytoplankton. 
The results showed that 1) the two-season temporal turnover of phytoplankton varied 
based on the mean values and the coefficient of variance of environmental variables, 
and pH was the most important variable negatively affecting the temporal turnover;  
2) the spatial beta diversity of phytoplankton in summer was higher than that in 
spring, and the distance decay pattern was significant in summer, but not in spring; 
3) the variation in spatial turnover in spring and summer was attributed to the pri-
mary environmental variables (nitrogen, phosphorus and underwater available light) 
and broader-scale spatial variables; 4) the proportion of jointly explained variation 
of spatial Bray–Curtis dissimilarity by the environment and space increased from 
~38% (spring) to ~55% (summer), which was mainly due to the variation in spatially 
structured environmental variables during the two-season temporal turnover, such as 
pH and ion concentrations; 5) the community compositions in summer were more 
similar between the lakes with similar two-season temporal turnover. These results 
indicate that the spatial turnover of phytoplankton composition in summer was par-
tially predetermined by the variation in environmental variables and phytoplankton 
composition during the process of two-season temporal turnover, and highlight the 
understanding of temporal variations in spatial beta diversity as well as the underlying 
assembly mechanisms in phytoplankton.

Introduction

Beta diversity, the spatial and temporal changes in species composition among 
sampling units, is a measure quantifying the change or turnover in species composi-
tion across space and time (Whittaker 1960, 1972). Beta diversity is a key concept 
for understanding ecosystem function and biodiversity conservation because it helps 
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describe the distribution of diversity (Legendre et al. 2005). 
In recent decades, there has been a remarkable increase in 
the number of studies on beta diversity, involving different 
study goals, such as the scaling of diversity (Legendre et al. 
2009, Barton et al. 2013), the distribution of species (Qian 
and Ricklefs 2007, Wang  et  al. 2012), metacommunity 
structure (Astorga et al. 2012, De Bie et al. 2012), ecosystem 
stability (O’Gorman and Emmerson 2009), conservation 
planning (Gering et al. 2003) and the development of eco-
logical theories (Condit et al. 2002, Kraft et al. 2011). These 
studies focus on two dimensions, space and time, to study 
beta diversity across ecosystems, geographical gradients and 
organism groups. However, there is little knowledge about 
the association between spatial and temporal beta diversity.

In general, the similarity of species composition typi-
cally decreases with increasing distance, known as distance 
(space, time or environment) decay (Nekola and White 
1999). The distance-decay pattern of spatial beta diversity is 
driven by multiple factors related to species functional traits 
or characteristics (body size, thermoregulation and dispersal 
type), geographical gradients and general ecosystem properties 
(spatial extent, geographical position, region, realm, migra-
tions and dispersal routes) (Soininen et al. 2007a). Temporal 
beta diversity is simultaneously governed by ecological, physi-
cal, and geographical variables (sampling duration, ecosystem 
size and type, organism size and latitude) (Korhonen et  al. 
2010). These factors have been integrated into two main 
explanations, niche theory and neutral theory (Astorga et al. 
2012), a framework shared by many authors (Duque et al. 
2002, Soininen et al. 2004, Cottenie 2005, Jones et al. 2006, 
Thompson and Townsend 2006, Nogueira  et  al. 2010). 
Niche theory predicts that community similarity decreases 
with environmental distance, irrespective of geographic prox-
imity, as a result of species differences along environmental 
gradients (Tilman 1982). Neutral theory, by contrast, pre-
dicts that the decay of community similarity is caused by 
spatially limited dispersal, independent of environmental dif-
ferences between sites (Hubbell 2001). Furthermore, niche 
theory and neutral theory are correlated with environment 
and geographic distance, respectively.

The relative importance of the two explanations is often 
linked to the spatial extent of the study (Soininen  et  al. 
2007b) or the functional traits of the organisms, such as 
the body size, life-history type and dispersal capacity of dif-
ferent organism groups (Astorga  et  al. 2012, De Bie  et  al. 
2012). Even within the same organism group, especially in 
groups of small organisms, there are different arguments 
regarding the relative importance of niche theory and neu-
tral theory, such as in the phytoplankton community. Some 
studies showed that the phytoplankton composition or beta 
diversity was controlled by only pure environmental effects 
(Vanormelingen  et  al. 2008), or both pure environmental 
and pure spatial effects (Soininen et al. 2007a, Teittinen et al. 
2016). Others showed that neither environmental nor spatial 
effects structured phytoplankton communities (Beisner et al. 
2006, Nabout et al. 2009). Compared with larger organisms, 
small organisms have relatively short generation times and 

high population growth rates. These traits mean that the 
composition of their communities can quickly track changes 
in the local environment seasonally (Korhonen et al. 2010), 
and their demographic characteristics should enable efficient 
species sorting and weaken the potential of dispersal limita-
tion to generate spatial patterns in metacommunities (Van 
der Gucht et al. 2007). Therefore, the relative importance of 
environmental and spatial fractions to spatial turnover may 
be affected by the temporal turnover, and addressing this 
possibility requires further time series spatial-snapshot studies 
to achieve a more comprehensive understanding of commu-
nity dynamics (Langenheder et al. 2012, Hatosy et al. 2013). 

The turnover of community composition across space 
is influenced by different assembly mechanisms, such as 
environmental conditions and dispersal (Langenheder et al. 
2012), which varied depending on temporal turnover pro-
cess. Therefore, spatial beta diversity can be associated with 
temporal turnover by analyzing the variations and their rela-
tionship to spatial and temporal beta diversity. However, 
due to the lack of data involving simultaneously variations 
in time, space, environment, and biotic assemblages, there 
is still limited knowledge about the temporal variation in 
spatial beta diversity and the association between spatial and 
temporal turnover. Shallow lakes are excellent model systems 
in which to investigate spatial interactions because of their 
island-like nature and discrete boundaries, and phytoplank-
ton communities experience dramatic seasonal shifts, espe-
cially from spring to summer. To overcome the hindrance 
from non-synchronization data (such as that in meta-
analysis) for analysis, we implemented two synchronous 
field investigations in spring and summer (as short as pos-
sible sampling campaign for each investigation, almost same 
internal between two campaigns for each lake, completely 
same variables for each investigation) at a regional scale and 
examined the variation in temporal and spatial beta diversity 
in phytoplankton in the lakes located in the Yangtze River 
catchment, China. We would use these simultaneously data 
to investigate how the temporal turnover affects the spatial 
beta diversity. Specifically, we hypothesis that 1) phytoplank-
ton composition will be similar (low spatial beta diversity) in 
the lakes with similar temporal turnover, 2) spatial variabil-
ity of environmental variables driving temporal turnover also 
will contribute to the spatial beta diversity, and 3) the effect 
of dispersal on the spatial beta diversity will increase from 
spring to summer due to flood pulses. 

Methods

Study lakes

This study investigated 49 floodplain lakes (all areas  1 km2, 
median/interquartile range of lake area: 16.1/27.8 km2) along 
the Yangtze River in China, from the middle reaches to the 
lower reaches) (Supplementary material Appendix 1 Table A1,  
Fig. 1). All of these lakes are shallow and polymictic fresh-
water lakes that span a trophic gradient from oligotrophy to 
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hypereutrophy due to different human population levels and 
different environmental backgrounds (Supplementary mate-
rial Appendix 1 Table A2).

Sampling and analyses

Sampling was carried out in April and August 2012,  
representing spring and summer, respectively. Each sam-
pling campaign was performed over a short timeframe 
(approximately 3 weeks) to obtain a snapshot view of the 
phytoplankton communities in the selected lakes. In each 
lake, the sampling duration (the interval between two sam-
pling campaigns) was approximately 120 d, and three sam-
pling sites were established to integrate spatial heterogeneity. 
For each sampling site, integrated water samples (5 l) were 
collected by mixing the surface (50 cm below the surface), 
middle and bottom (50 cm above the bottom) samples taken 
with a Uwitec water sampler (Uwitec, Mondsee, Austria). 
The mixed layer depth was determined from the vertical 
temperature profiles.

Vertical profiles of physical and chemical parameters 
(temperature, pH, dissolved oxygen (DO) and conductivity) 
were measured at every sampling site to calculate the mean 
values and determine the depth of the mixed layer using 
a multiparameter meter (model 6600V2; Yellow Springs 
Instruments, Yellow Springs, OH, USA). Transparency 
(SD) was measured with a Secchi disk. Five liters of water 
were collected for laboratory analyses. Ammonium (NH4

+), 
nitrate (NO3

–), nitrite (NO2
–) and dissolved inorganic phos-

phorus (PO4
–) were measured using a continuous flow anal-

yser (Skalar SA 1000, Breda, the Netherlands). Dissolved 
anions (Cl–, SO4

2–, K+, Na+, Ca2+, Mg2+) were analysed using 

ion chromatography, inductively coupled plasma atomic 
emission spectroscopy or inductively coupled plasma mass 
spectrometry. Total nitrogen (TN) and total phosphorus 
(TP) were analysed using peroxodisulphate oxidation 
and the spectrophotometric method. Chlorophyll a was 
extracted with 90% acetone and measured on a spectrofluo-
rophotometer (Shimadzu RF-5301PC, Japan) (Yan  et  al. 
2004). The diurnal mean light during the sampling period 
was obtained from the closest meteorology stations of the 
China Meteorological Administration.

Plankton analysis

Integrated 500-ml phytoplankton samples were collected at 
each site and fixed with acid Lugol. Identification was per-
formed at the species or genus level using the most recent 
literature (Hu and Wei 2006). Counts were made in ran-
dom fields (more than 30 fields) in sedimentation cham-
bers (30 ml) using an inverted microscope following the 
criteria of Utermöhl (1958). For dominant species, at least 
100 individuals were counted. For all lakes, we considered 
the organism as the unit (unicell, colony, or filament) to 
facilitate the calculation of the biovolume. Cell numbers 
per colony as well as organism dimensions, including maxi-
mum linear dimension were estimated. The biovolume was 
calculated from the measurements of 30 organisms of each 
species at each site according to Hillebrand et  al. (1999). 
The biomass was determined as algal volume for each lake 
and converted to fresh weight assuming a specific gravity 
of 1 g cm–3. The species richness is the total number of 
species recorded during counts, which was standardized to 
count size.

Figure 1. Map of the study lakes in China. The blue polygons indicate all lakes (area  1 km2) in China, and the green ones indicate the 
investigated lakes in the case.
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Data analysis

Calculating and comparing the temporal and spatial  
beta diversity
The variability in species composition among sampling units 
can be measured with beta diversity (Anderson et al. 2006). 
The most widely used ecological measures of compositional 
dissimilarity include the classic Jaccard index (Jaccard 1900), 
Sørensen index (Sørensen 1948) for presence–absence data 
(Chao  et  al. 2005), and the Bray–Curtis index (Bray and 
Curtis 1957) for relative abundance information (Magurran 
2004, Hatosy et al. 2013, Teittinen et al. 2016). The Sørensen 
index is monotonically related to Jaccard index, and its value 
is lower than that of Jaccard index. The difference between 
the two indices is that the Sørensen index gives double value 
to shared species. The Bray–Curtis index is considered to be 
an extension of the Sørensen index; it varies from 0 to 1,  
and if data are reduced to presence/absence, then the Bray–
Curtis index is equal to Sørensen index. In the present study, 
the Bray–Curtis and Jaccard dissimilarity indices were chosen 
as beta biodiversity metrics reflecting the variation in phy-
toplankton communities. We calculated the two metrics 
to assess the temporal (from spring to summer) and spatial 
(among lakes and within lakes) variation of phytoplankton 
composition using the R package ‘vegan’ (Okasanen  et  al. 
2012). The temporal beta diversity of each lake and the spa-
tial beta diversity among lakes were calculated with the data 
of the mean values of three sites in each lake. To diminish the 
effect of rare species, we selected the data of the phytoplank-
ton contributing  1% of the total community biomass and 
occurring in at least 3 lakes before completing the calculation. 
For the Bray–Curtis index, we calculated the metric with no 
transformation data, log transformation data and square root 
transformation data. The results were very similar; therefore, 
only the results from the square root transformation data 
were used in the study. In addition, there were slight differ-
ence in the sampling intervals (119.8  2.88 d) of all lakes 
from spring to summer. To diminish the effect of sampling 
intervals on temporal turnover and make the turnover to be 
comparable, we modified the values of the two metrics by 
dividing by the sampling intervals, which were transformed 
to mean = 1. After the temporal and spatial beta diversity 
were obtained, the difference among them were compared 
with Tukey HSD post-hoc test. The spatial beta diversity 
along the lakes was shown in a heat map ranked by increasing 
temporal turnover to present the association between them.

Analysing the primary factors driving the variation in 
temporal beta diversity
To identify the primary reasons for the variation in temporal 
beta diversity, the relationships between the temporal beta 
diversity indices and potential explanatory variables were 
analysed with generalized linear models (GLMs) and boosted 
regression trees (BRTs). Both the mean levels and the discrep-
ancy of explanatory variables between spring and summer 
might affect the variation of phytoplankton composition. 
Therefore, we chose the mean values and the coefficient of 

variance (CV) of environmental variables as explanatory 
variables. Before the two analyses, we first integrated and 
performed principal components analysis (PCA) to reduce 
the dimensions of the environmental variables (water depth, 
transparency, water temperature, diurnal mean light, pH, 
DO, electronic conductivity, TN, TP, Cl–, SO4

2–, K+, Na+, 
Ca2+, Mg2+, PO4

3–, NH4
+, NO2

–, NO3
–), and to decrease 

the degrees of freedom below the number of sampled lakes. 
First, we integrated NO2

– and NO3
– as NOx by adding them 

together. Second, we calculated the mean light (Im) using the 
following formula (Riley 1957):

I I
e

KZm

KZ

m

m

=
− −1

	  

Here, we used the diurnal mean light during the sampling 
period as the surface light (I). We estimated extinction coef-
ficients (K) using Secchi disk transparency (Zsd) with the 
relationship, K = 1.54/Zsd (Sterner 1990). The mixing depth 
(Zm), defined as the greatest depth at which the tempera-
ture differed from the lake surface temperature by not more 
than 1°C, was determined from the temperature profile. 
Finally, by performing PCA with the R package ‘psych’, the 
mean values and CV values of electronic conductivity and 
the concentration of dissolved ions (Cl–, SO4

2–, K+, Na+, 
Ca2+, Mg2+) were reduced to one principal component, Ion 
(PC1, Supplementary material Appendix 1 Table A3) and 
cvIon (PC1, Supplementary material Appendix 1 Table A4),  
respectively, as explanatory variables. The mean nutri-
ents were reduced to their first two principal components:  
P (PC2), including TP and PO4

3–; N (PC3), including TN, 
NH4

+, NOx (Supplementary material Appendix 1 Table A3). 
The CV values of nutrients were also reduced to their first 
two principal components: cvP (PC2), including cvTP and 
cvPO4

3–; cvN (PC3), including cvTN, cvNH4
+ and cvNOx 

(Supplementary material Appendix 1 Table A4). The remain-
ing variables were used as explanatory variables without a 
PCA step. Explanatory variables (temperature, DO and Im) 
were log-transformed [log10(x + 0.0001)] before analysis to 
reduce distributional skew.

GLMs with Gaussian error distribution were used to 
examine temporal beta diversity in relation to the explanatory 
variables. The GLM results show the importance of variables 
in a multivariate setting. The best approximating model was 
selected with Akaike’s information criterion (AIC; Akaike 
1974). In addition to GLM, we determined the effects of 
explanatory variables on temporal beta diversity with a BRT 
method to ensure the independence of the methods. BRT 
is an ensemble method for fitting statistical models that 
differs fundamentally from conventional techniques that aim 
to fit a single parsimonious model (Elith et al. 2008). BRT 
is based on the combination of the strengths of two algo-
rithms: regression trees (models that relate a response to their 
predictors by recursive binary splits) and boosting (an adap-
tive method for combining many simple models to provide 
improved predictive performance). The final BRT model can 
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be understood as an additive regression model, in which the 
individual terms are simple trees fitted in a forward, stage-
wise fashion (Elith et al. 2008). Due to relatively low sample 
size, we fitted the BRT (interaction depth = 2, bagging frac-
tion = 0.5, learning rate = 0.0005) using the function ‘gbm’ in 
the R package ‘gbm’ with a Gaussian error distribution. The 
optimal number of trees was produced with cross-validation.

Analysing the reasons explaining the variation in spatial beta 
diversity
To examine the variation in beta diversity of phytoplankton 
among lakes (spatial beta diversity), we first detected the 
spatial autocorrelation patterns of the species dissimilarity 
matrix and environmental variables in phytoplankton com-
munities. A Mantel correlogram (Borcard and Legendre 
2012) was implemented with the function ‘mantel.correlog’ 
in the R package ‘Vegan’. The geographical distance matrix 
was divided into fifteen distance classes according to Sturge’s 
rule (Scott 2009) to set the range of pairwise distance in each 
class (Legendre and Legendre 2012). Mantel correlation 
coefficients were calculated at each distance class and tested 
for significance with a permutation test (using 9999 per-
mutations) based on a sequential Bonferroni correction 
(alpha = 0.05; Legendre and Legendre 2012). 

Next, we used a distance-based approach (Wang  et  al. 
2013), where the dissimilarity is related to the spatial and 
environmental distance between lakes. Environmental dis-
tance was measured as Euclidean distance using all environ-
mental variables standardized to have a mean of zero and a 
standard deviation of one. Bray–Curtis and Jaccard dissimilar-
ities were regressed against spatial or environmental distances 
using a Gaussian generalized linear model. Significance was 
determined using Mantel tests (Spearman’s correlation) with 
9999 permutations (Legendre et al. 2005). Furthermore, par-
tial Mantel tests were used to assess the relationship between 
beta diversity and spatial or environmental distance after con-
trolling for environmental distance or spatial distance, and 
the significance was assessed using 9999 permutations. Sub-
sequently, variation partitioning analysis was performed to 
quantify the contribution of environmental and spatial dis-
tance to the community dissimilarities (Martiny et al. 2006). 
These analyses were performed in the R environment with 
the Vegan package (Okasanen et al. 2012). 

In addition, we estimated the degree of variation in spatial 
beta diversity that can be attributed to spatial patterns and the 
distance of environmental variables (Ion, pH, P, N and log-
transformed temperature, Im and DO). Before the analysis, 
the spatial pattern was decomposed to a set of variables using 
principal coordinates of neighbour matrices (PCNM; Bor-
card and Legendre 2002). For this step, a geographic distance 
matrix was produced from the locations of the lakes. This 
matrix was then truncated using a threshold distance equal 
to the maximum distance from the minimum spanning tree 
created from the inter-site distances, and all distances greater 
than this threshold were replaced with a value of four times 
the threshold distance. A principal coordinates analysis 
(PCoA) was performed on the truncated geographic distance 

matrix, and all eigenfunctions with positive eigenvalues were 
retained. Subsequently, variation partitioning was performed 
using the ‘varpart’ function in the Vegan package to disentan-
gle the contributions of spatial and environmental distance to 
the dissimilarities. 

Furthermore, multiple regression on distance matrices 
(MRM, nperm = 999) (Lichstein 2007) was implemented 
using the ecodist package in R (Goslee and Urban 2007) to 
estimate the significant variables including environmental 
variables and PCNM eigenfunctions. To reduce the effect of 
spurious relationships between variables, we ran the MRM 
test, removed the non-significant variables, and then reran 
the tests until all variables were significant (Martiny  et  al. 
2011). We report the final model results. The relative impor-
tance (lmg value) of these significant variables was calculated 
with the relaimpo package (Grömping 2006). All statistical 
analyses were conducted in R (R Core Team).

Results

Comparison of temporal and spatial beta diversity

In the case, we totally identified 214 species in these lakes 
(Supplementary material Appendix 1 Table A5). The mean 
richness was 35. The results of temporal and spatial beta 
diversity in the lakes showed that, for the Bray–Curtis dis-
similarity index, the temporal beta diversity (dissimilar-
ity between spring and summer, 0.79  0.16) and the beta 
diversity among lakes in summer (0.76  0.16) were the high-
est, followed by the beta diversity among lakes (0.59   0.14) 
in spring. The beta diversities within lakes in spring (0.35  

0.12) and summer (0.38  0.17) were lowest (HSD-test, 
p  0.05), and there was no significant difference between 
them. For the Jaccard dissimilarity index, the pattern was 
similar to that of the Bray–Curtis index, except that the beta 
diversity within the lakes in summer was higher than in spring 
(Supplementary material Appendix 1 Fig. A1). Moreover, 
there was no relationship between the beta diversity among 
lakes in summer and spring (p  0.05). In the heat map, the 
low values of spatial beta diversity indices mainly distributed 
along the top-right to bottom-left diagonals, and high values 
mainly distributed in the top-left and bottom-right corners 
in summer (Fig. 2). In spring, there was no obvious distri-
bution patterns for these values. Furthermore, the values of 
the spatial beta diversity indices in summer were lower in the 
lakes with similar two-season temporal turnover (especially 
the turnover in the range of 0.4–0.7 and 0.9–1.0) than in 
those with very different two-season temporal turnover. 

The temporal variation of beta diversity

The phytoplankton composition dynamically changed from 
spring to summer according to the Bray–Curtis and Jaccard 
dissimilarity values. The difference between the Bray–Curtis 
and Jaccard dissimilarity values decreased with increasing 
two-season temporal turnover (Supplementary material 
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Appendix 1 Fig. A2). The result of best approximating GLM 
showed that the averaged nitrogen level (p = 0.020) and 
the CV value of DO (p = 0.013) explained the variation in 
Bray–Curtis dissimilarity significantly, and pH (p = 0.052) 
also slightly contributed to the variation (AIC = –51.4, 
D2 = 69.7%, Supplementary material Appendix 1 Table A6).  
The pH (p = 0.002) and CV values of DO (p = 0.007) 
were primary explanatory variables for the Jaccard dissimi-
larity (AIC = –79.7, D2 = 44.1%, Supplementary material 
Appendix 1 Table A6). The importance of pH was further 
emphasized in the results of BRT, in which it had the highest 
relative influence on the Bray–Curtis dissimilarity (22.0%), 
followed by the CV of temperature (14.1%), nitrogen level 
(9.6%), lake area (9.4%), the CV of pH (8.3%) and the 
other factors ( 7%). The pH also had the highest relative 
influence on the Jaccard dissimilarity (37.4%), followed by 
the CV of temperature (11.4%), the CV of pH (9.6%), lake 
area (8.3%), the CV of pH (8.3%) and other factors ( 5%) 
(Fig. 3). The temporal dissimilarity values of phytoplankton 
decreased with increasing pH and increased with increasing 
nitrogen level and the CV of temperature (Supplementary 
material Appendix 1 Fig. A3 and A4).

The spatial variation of beta diversity

Mantel’s autocorrelogram of the environmental variables in 
spring showed that spatial autocorrelation was typically non-
significant except in the first distance class for temperature 

and nitrogen and in the first several classes for Ion and Im. 
Mantel’s autocorrelogram of the environmental variables in 
summer showed that spatial autocorrelations of temperature, 
nitrogen, phosphorus, dissolved oxygen and Im were signifi-
cant in the first through third distance classes. Ion and pH 
were significantly positively autocorrelated in the sites closer 
than 150 and 100 km, respectively. pH was negatively auto-
correlated in the sites farther than 200 km (Supplementary 
material Appendix 1 Fig. A5 and A6). Mantel’s autocorre-
logram of community dissimilarities showed a decreased 
trend in Mantel correlation statistical values. Spatial autocor-
relation in the two indices was not significant in the most 
distant class scale in spring except in the first distance class 
(ca 12 km), and it was positively autocorrelated in the sites 
closer than 100 km in summer (Supplementary material 
Appendix 1 Fig. A7). In other words, closer sites were more 
similar in phytoplankton composition in summer (p  0.05). 
The spatial autocorrelogram indicated that phytoplankton 
compositions became less similar as geographical distances 
increased. In addition, Mantel’s autocorrelogram of two-
season temporal turnover showed that spatial autocorrelation 
was typically non-significant except in the first distance class 
(Supplementary material Appendix 1 Fig. A8).

Mantel tests showed that phytoplankton community dis-
similarities based on both the Bray–Curtis and the Jaccard 
indices increased significantly with environmental and spa-
tial distance in summer, and no significant relationship was 
found in spring (Fig. 4). The gradient magnitude of the 
Bray–Curtis dissimilarity increased from 0.81 (0.18–0.99) in 
spring to 0.96 (0.04–1.00) in summer, and that of the Jaccard 
dissimilarity increased from 0.76 (0.20–0.96) in spring to 
1.00 (0.00–1.00) in summer. The maximum environmental 
distance (Euclidean distance) increased substantially from 
4.18 in spring to 6.99 in summer (Fig. 4). In summer, the 
relationships between community dissimilarity and environ-
mental distance were consistently weaker than those between 
community dissimilarity and spatial distance according to 
the r values (Table 1). Based on partial Mantel tests, the pure 
effects of environmental and spatial characteristics on com-
munity dissimilarities were also significant only in summer, 
and the pure spatial effects were more significant than envi-
ronmental effects according to the r and p values (Table 1). 

The spatial pattern was broken down into 21 PCNM 
eigenfunctions with positive eigenvalues, which were used for 
modelling community dissimilarities as well as environmen-
tal variables. The results of variation partitioning showed that 
environmental and spatial characteristics jointly explained 
more of the variation in the Bray–Curtis dissimilarity than 
of the Jaccard dissimilarity. While 27% of the variation of 
the Bray–Curtis dissimilarity in spring was spatially struc-
tured and explained by the PCNM eigenfunctions, 45% of 
that amount was explained by the environmental variables. 
The effect of the environment was highly spatialized (51% of 
environmental effect) (Fig. 5a). In addition, PCNM eigen-
functions and environmental variables explain 15% of the 
variation in the Jaccard dissimilarity in spring, respectively. 
47% of spatial effect was also explained by the environmental 

Figure 2. The heat maps of spatial beta diversity (Bray–Curtis and 
Jaccard dissimilarity) in spring and summer along the lake rank  
of increasing two-season temporal turnover. Hot colors represent 
high dissimilarity between two samples. Cool colors represent low 
dissimilarity between two samples. The red diagonals represent  
the dissimilarity of each sample compared to itself. The panels under 
the heat maps are two-season temporal turnover in different lakes 
ranked with increasing two-season temporal turnover. 
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variables, and 47% of environmental effect was spatialized 
(Fig. 5b). 

In summer, the variation of Bray–Curtis dissimilarity was 
explained by PCNM eigenfunctions (44%) and environmen-
tal variables (37%). The explaining amount of the spatial and 
environmental variables was up to 55%, and the unexplained 
portion was approximately 45%. In addition, 60% of the 
explaining amount by PCNM eigenfunctions was explained 
by environmental variables. The effect of environmental vari-
ables on dissimilarity was spatialized (71% of environmen-
tal effect) (Fig. 5c). For the Jaccard dissimilarity in summer, 
spatial and environmental variables explained 32% and 31% 
of its variation, respectively. Finally, 82% of the explaining 
amount by PCNM eigenfunctions was also explained by 
environmental variables, and 86% of environmental effect 
was spatialized (Fig. 5d).

The results of MRM showed the significant variables 
that contribute to the variation in dissimilarity indices in 
spring and summer (Supplementary material Appendix 1 
Table A7, ordination diagrams for the significant PCNM 
vectors were shown in Supplementary material Appendix 1  

Fig. A9). In summer, the significant variables were P, Im, 
PCNM1, PCNM2, and PCNM3 contributing to the varia-
tion of Bray–Curtis dissimilarity, and P, PCNM1, PCNM2, 
and PCNM3 for Jaccard dissimilarity. PCNM1 was mainly 
related to pH (74% of explained variation, Table 2). 
PCNM2 was related to Ion (62%, Table 2). PCNM3 was 
weakly related to water temperature (7%, Table 2). The spa-
tial variables were more important than the environmental 
variables according to the regression coefficients and lmg 
values. In spring, N, P, PCNM2, PCNM3 and PCNM15 
were significant variables determining the variation in the 
Bray–Curtis dissimilarity and P, Im, and PCNM3 were sig-
nificant variables for the variation of Jaccard dissimilar-
ity. PCNM2 was mainly related to Ion (65%, Table 2).  
PCNM3 was mainly related to nitrogen level (12%,  
Table 2). PCNM15 was related to phosphorus level (13%, 
Table 2). Environmental variables were relatively important 
in the variation of dissimilarities compared with those in 
summer. In addition, all the PCNM eigenfunctions with rel-
atively high importance were low order, which represented 
spatial structure at broader scales (Dray et al. 2006).

Figure 3. The environmental factors related to Bray–Curtis and Jaccard dissimilarity of phytoplankton between spring and summer (turn-
over rate) identified with Boosted Regression Trees. The values of the relative contribution (%) of each variable for each dissimilarity metric 
can be found in parentheses on the x-axes of Supplementary material Appendix 1 Fig. A3 and A4. pH: the pH mean values in spring and 
summer; N: the principal component scores of nitrogen nutrients including the mean values of total nitrogen, dissolved total nitrogen, 
nitrite, nitrate and ammonia; Tem: mean values of the water temperature, Im: the mean values of the underwater available light; P: the 
principal components of phosphorus nutrients including the mean values of total phosphorus, dissolved total phosphorus, phosphate; DO: 
the mean values of the dissolved oxygen; Con: the mean values of conductivity; depth: the mean values of the depth; cvTem: the coefficient 
of variation (CV) of temperature between spring and summer; cvpH: the CV of pH; cvTN: the CV of total nitrogen; cvNOx: the CV of 
nitrite and nitrate; cvPO4: the CV of phosphate; cvIm: the CV of underwater available light; cvCon: the CV of conductivity; cvDepth: the 
CV of depth; cvNH4: the CV of ammonia; cvTP: the CV of total phosphorus.
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Discussion

Comparison of spatial and temporal beta diversity

Our study showed that beta diversity in summer (wet sea-
son) was significantly higher than that in spring (dry season) 
(Supplementary material Appendix 1 Fig. A1). In floodplain 
lakes, high environmental heterogeneity (differences in ori-
gin, morphometry, hydrology, and limnology) is expected 
to cause high beta diversity (Neiff 1996), and flood pulses 
have a homogenizing effect, increasing similarity between 
lakes (Thomaz  et  al. 2007). However, this effect was not 
found in the phytoplankton community in the investi-
gated lakes, which was consistent with the results from the  
Araguaia River tropical floodplain lakes (Nabout et al. 2007). 
This finding might be due to the extensive sampling scale, 
in which the lakes keep relatively isolated. The rainfall events 
only partially homogenized the environmental heterogeneity 

and were not sufficient to decrease the dissimilarity of the phy-
toplankton composition. The beta diversity within lakes was 
significantly lower than that among lakes. The connectivity 
of water body within lakes was obviously better than that 
among lakes, which might contribute to the high similarity 
of the phytoplankton composition within lakes. The data also 
indirectly confirmed the importance of lake isolation to the 
high beta diversity among lakes.

Explaining the temporal turnover

The temporal turnover varied among the investigated lakes 
in the study. According to the review by Rosenzweig (1995), 
the patterns in temporal turnover are mostly driven by the 
sampling effect at short timescales, and ecological or (espe-
cially) evolutionary factors do not have enough time to shape 
the assemblage. However, for short-lived organisms, the 
sampling effect may influence the turnover on a time scale 

Table 1. Results of Mantel and partial Mantel tests for the correlation between phytoplankton community dissimilarity among lakes (Jaccard 
and Bray–Curtis) and spatial distance, and environmental distance (Euclidean) in each season. The significant Mantel and partial Mantel 
correlations were shown as bold.

Environmental Spatial Environmental-spatial Spatial-environmental

Phytoplankton Index r p r p r p r p

Spring Bray–Curtis dissimilarity 0.098 0.074 0.034 0.268 0.093 0.090 0.006 0.432
 Jaccard dissimilarity 0.021 0.336 0.049 0.176 0.007 0.438 0.045 0.197
Summer Bray–Curtis dissimilarity 0.310  0.001 0.448  0.001 0.120 0.023 0.359  0.001
 Jaccard dissimilarity 0.313  0.001 0.435  0.001 0.131 0.014 0.341  0.001

Environmental-spatial = the effects of environmental distance on community dissimilarity while controlling for spatial distance; spatial-
environmental = the effects of spatial distance on community dissimilarity while controlling for environmental distance.

Figure 4. The relationship between beta diversity of phytoplankton (Bray–Curtis and Jaccard dissimilarity) among lakes and environmental 
and spatial distance. The trends along environmental distance were modeled with linear models. The significant trends (p  0.05) were 
showed as solid line. 
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of only days (Soininen 2010), and the temporal turnover of 
phytoplankton should be affected not only by sampling effect 
(sampling duration) but also by a number of ecological factors 
(ecosystem size, latitude gradient) (Korhonen et al. 2010). In 
this case, the investigated lakes are almost all located in the 
same latitude, and we also controlled the sampling interval 
of each lake and duration for each campaign at the almost 
same level. All synchronous investigating protocols effec-
tively limited the sampling effect. Therefore, the ecological 
factors, including environmental variables and lake area, 
might be the primary explanatory variables. According to 
the results of GLM and BRT, the mean pH was the prin-
cipal contributor to the variation of two-season temporal 
turnover of phytoplankton among the investigated lakes. In 
the low pH lakes, the turnover of phytoplankton was more 
dramatic than in the high pH lakes (Supplementary material 
Appendix 1 Fig. A3 and A4), which was consistent with  
the results of experimental acidification (Brettum 1996).  

The importance of pH for diatom composition was also 
found in some streams (Teittinen  et  al. 2016, Wang  et  al. 
2017). The two-season temporal turnover was also remark-
ably affected by the difference in temperature and pH 
between spring and summer, lake areas and nitrogen levels, 
and increased with these variables. In particular, the contri-
bution of nitrogen level to beta diversity based on abundance 
data was higher than that to presence–absence data. These 
results suggested that decreasing pH, increasing CV of tem-
perature and pH, and nitrogen enrichment will increase the 
two-season temporal turnover and the crisis of decreasing 
aquatic ecosystem stability (Haines 1981). The two-season 
temporal turnover rate also increased with the increase of lake 
area, which is consistent with the findings of Korhonen et al. 
(2010) and does not support the general species-time-area 
relationship (Adler et al. 2005). 

Variation in explaining factors contribution to spatial 
beta diversity

It has been recognized that community similarity will decay 
(or dissimilarity will increase) with increasing geographical 
or environmental distance. However, there is no consensus 
on the distance decay relationship across organism groups, 
geographic gradients and environments (Soininen  et  al. 
2007b). We found that the distance decay pattern of phyto-
plankton community similarity was not significant in spring, 
while it was significant in summer, which was confirmed by 
the results of the Mantel test. The non-significant pattern in 
spring was consistent with the findings of 18 lakes in Canada 
(Beisner  et  al. 2006) and in the floodplain lakes of Brazil 
(Nabout  et  al. 2009). The significant pattern in summer 
agreed with the studies reviewed by Soininen et al. (2007b) 
and recent studies in diatoms (Teittinen et al. 2016). The sig-
nificant environmental distance decay in summer was also in 
agreement with the results of Vanormelingen et al. (2008). 

Table 2. Significant environmental variables related to the signifi-
cant PCNM vectors in MRM analysis. Forward regression based on 
permutation procedure was used to select the environmental 
variables. Adj-R2 = adjusted coefficient of determination. For the 
spatial patterns of each PCNM variable, see Supplementary material 
Appendix Fig. A6.

 
Spatial 
vectors

Environmental 
variables Adj-R2 F p

Spring PCNM2 Ion 0.653 91.526 0.001
  P 0.065 11.819 0.003
 PCNM3 N 0.120 7.518 0.012
  DO 0.077 5.514 0.024
 PCNM15 P 0.131 8.231 0.004
Summer PCNM1 pH 0.739 136.760 0.001
  DO 0.084 23.387 0.001
  P 0.034 12.080 0.001
 PCNM2 Ion 0.615 77.734 0.001
 PCNM3 Temperature 0.065 4.329 0.042

Figure  5. The Venn diagrams representing the partition of the variation Bray–Curtis and Jaccard dissimilarity in spring and summer 
between environmental variables (left circle, X1) and PCNM eigenfunctions (right circle, X2). Each box represents 100% of the variation 
in the corresponding response variable. The reported fractions are adjusted R2. 
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The lack of consistency in distance decay pattern between 
spring and summer could be explained by comparing the 
effects of the environmental and spatial variables on beta 
diversity (based on abundance and presence–absence data). 
First, we differentiated the reasons of the variation from being 
non-significant in spring to being significant in summer. The 
variation in the geographical distance decay pattern could be 
attributed to the increase in the phytoplankton composition 
gradient due to a lack of variation in the geographical distance. 
The variation in the environmental distance decay pattern 
should be attributed to both the increasing environmental 
distance and the phytoplankton composition gradient. Based 
on the partial Mantel test (Table 1), the relationship between 
both the pure environmental and spatial distance and phy-
toplankton community dissimilarity became significant in 
summer. However, the pure effect of environmental dis-
tance on the two community dissimilarities was consistently 
weaker than that of spatial distance, suggesting that environ-
mental filtering did not account for much of the among-site 
differences in species composition. This finding may be due 
to the relatively small ranges in the measured environmental 
variables or the fact that we missed some spatially structured 
abiotic or biotic factors that may have been influential to the 
distance decay patterns (Teittinen et al. 2016). 

Furthermore, we analysed the changes in the proportion of 
explained variation from spring to summer. According to the 
results of variation partitioning, the proportions of explained 
variation in the Jaccard dissimilarity index and the Bray–Curtis 
dissimilarity index increased obviously, which indicated that 
the effect of environmental and spatial variables on the phy-
toplankton presence–absence and abundance composition 
significantly increased. The environment-controlled effect on 
the Bray–Curtis dissimilarity index increased from 24% in 
spring to 37% in summer, and that on the Jaccard dissimilar-
ity index increased from 15% in spring to 31% in summer. 
John et al. (2007) suggested that the increasing environment-
controlled effect might be attributed to the involvement of 
different environmental or biological variables between two 
analysis. However, in our case, we used the same variables 
to perform the analysis in spring and summer. The effect 
of difference in variables could be excluded, and the altered 
proportion should be from the variation of environment and 
species composition. From spring to summer, the variation 
of environmental variables, especially the spatially structured 
environmental variables (Fig. 5c, d), such as pH (Supplemen-
tary material Appendix 1 Fig. A6, Table 2), resulted in the 
changes (two-season temporal turnover) in species composi-
tion (Fig. 3), which increased the correlation between envi-
ronmental distance and spatial dissimilarity of phytoplankton 
composition (Fig. 4) and indicated the increasing species 
sorting (Leibold et al. 2004, Langenheder et al. 2012). The 
pure spatially structured variation for the Jaccard dissimilar-
ity index did not change significantly from spring to summer 
and that for the Bray–Curtis dissimilarity index increased 
from 15% in spring to 18%, which was a relatively slight 
variation. The pure spatially structured variation is generally 

considered to be as neutral processes, such as dispersal, and 
the effect of unobserved variables, which are not correlated 
with the observed environmental variables but are spatially 
structured (Legendre  et  al. 2009, Legendre and Legendre 
2012). We can expect an increased dispersal process among 
the floodplain lakes in the wet season. However, the disper-
sal process seems to be limited to lakes closer than approxi-
mately 100 km, which did not decrease the magnification of 
spatial beta diversity from spring to summer in the broader 
spatial scale (Supplementary material Appendix 1 Fig. A1). 
In addition, the unobserved environmental variables were the 
same in spring and summer. The variables should be spatially 
structured during the temporal turnover process if these vari-
ables contribute to the increase in the proportion. Overall, it 
is difficult to distinguish the contribution of dispersal from 
unobserved variables to the 3% variation at the current time.

Finally, as both environmental and spatial vari-
ables explained significant portions of the variation in 
phytoplankton dissimilarity based on abundance and pres-
ence–absence data, we further evaluated which of these envi-
ronmental variables and spatial eigenfunctions were most 
important for each dissimilarity index in each season. We 
found that all the significant environmental variables are 
the primary variables for determining the growth rates and 
composition of phytoplankton, such as nitrogen, phospho-
rus and light (Reynolds 2006). The most important spatial 
eigenfunctions were the broader scale variables (Borcard and 
Legendre 2002, Dray  et  al. 2006). Furthermore, the rela-
tive importance of spatial eigenfunctions was similar to that 
of environmental variables for the two dissimilarity indi-
ces in spring. However, the spatial variables were of greater 
importance than environmental variables in summer, which 
confirmed the results of the partial Mantel tests. 

Association of temporal and spatial beta diversity

The rates of temporal and spatial species turnover have been 
compared in different organisms, revealing that temporal and 
spatial species turnover are not independent but, rather, are 
associated (Adler et al. 2005, Hatosy et al. 2013). Our results 
further showed how the temporal and spatial species turnover 
in phytoplankton were associated. In spring, there was no 
relationship between the spatial beta diversity and two-season 
temporal turnover. After experiencing the two-season tem-
poral turnover, the community assemblies in summer were 
more different in space than those in spring. In particular, in 
the lakes with low two-season temporal turnover (0.4–0.7 of 
dissimilarity), the phytoplankton composition was relative 
stable. During the two-season temporal turnover process, 
some spring species were replaced and some shifted in abun-
dance, the ultimate composition of species in summer was 
approximately 50% similar to the spring population. In the 
lakes with high two-season temporal turnover (0.9–1.0 dis-
similarity), almost all the species were replaced, and the new 
community assemblies presented partial similarity. The species 
composition in summer was quite different between the lakes 
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with low and high two-season temporal turnover. The spa-
tial turnover rates were relatively low between the lakes with 
similar two-season temporal turnover. These results suggested 
that the spatial turnover of phytoplankton composition in 
summer was partially predetermined based on the variation in 
environmental variables and phytoplankton composition dur-
ing the process of two-season temporal turnover. The jointly 
explained proportion of spatial dissimilarity in phytoplankton 
by environmental and spatial variables increased significantly 
from spring to summer, which indicated that the environmen-
tal variables and community composition varied towards the 
increasing correlation with spatial variables. For example, pH, 
the primary factor affecting two-season temporal turnover, 
was spatially structured accompanying with the temporal 
turnover process, and contributed to the spatial turnover of 
phytoplankton in summer. 

In summary, our results demonstrate the association 
between the spatial and temporal beta diversity of phyto-
plankton in lakes, which spatial beta diversity was low in 
the lakes with similar temporal turnover. The association 
mainly was linked by the variation of environmental vari-
ables. The environmental variables controlling the temporal 
turnover were spatially structured over time, which further 
determine the spatial beta diversity. These results suggested 
that specie sorting is the main assembly process during the 
temporal shift process. The contribution of dispersal process 
to spatial beta diversity was limited in the regional spatial 
scale and seasonal temporal scale. Thus, our study would be 
helpful to understanding the inconsistency in the explana-
tion of spatial beta diversity by emphasizing the association 
between temporal and spatial turnover, and shows the need 
to integrate spatial and temporal process to achieve a more 
comprehensive understanding of phytoplankton dynamics.
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