
MINI-REVIEW

Degradation of triclosan by environmental microbial consortia
and by axenic cultures of microorganisms with concerns to wastewater
treatment

Xijuan Chen1
& Jie Zhuang2

& Kai Bester3

Received: 11 April 2018 /Accepted: 14 April 2018 /Published online: 7 May 2018
# Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
Triclosan is an antimicrobial agent, which is widely used in personal care products including toothpaste, soaps, deodorants,
plastics, and cosmetics. Widespread use of triclosan has resulted in its release into wastewater, surface water, and soils and has
received considerable attention in the recent years. It has been reported that triclosan is detected in various environmental
compartments. Toxicity studies have suggested its potential environmental impacts, especially to aquatic ecosystems. To date,
removal of triclosan has attracted rising attention and biodegradation of triclosan in different systems, such as axenic cultures of
microorganisms, full-scale WWTPs, activated sludge, sludge treatment systems, sludge-amended soils, and sediments has been
described. In this study, an extensive literature survey was undertaken, to present the current knowledge of the biodegradation
behavior of triclosan and highlights the removal and transformation processes to help understand and predict the environmental
fate of triclosan. Experiments at from lab-scale to full-scale field studies are shown and discussed.
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Introduction

Triclosan (2,4,4′-trichloro-2’hydroxydiphenylether) (Table 1)
is a synthetic, lipid-soluble, broad spectrum antimicrobial
agent which was first introduced in the health care industry
in 1972, and since 1985, it has been added to toothpaste in the
USA and Europe (Jones et al. 2000). Currently, triclosan is
used in 140 different types of consumer products including
liquid hand soap, shower gels, hand lotions, toothpaste,
mouthwashes, deodorants, as well as in textiles and polymeric
products such as, mattresses, toothbrushes, kitchenware and
plastic food containers, shoes, clothing, and children’s toys

(Levy et al. 1999; Fiss et al. 2007). Triclosan has also been
used in hospitals and medical products to control bacteria
growth and the spread of disease (Bhargava and Leonard
1996). A registration as a biocide according the biocidal prod-
uct directive was, however, not approved (EU 2012; EU
2016). Opposite to that, it still can (and is) used under the
cosmetics regulation in the EU (EU 2009). In the European
Union (EU), about 85% of the total amount of triclosan is used
in personal care products, compared to 5% in textiles and 10%
in plastics and food contact materials (SCCP/1192/08 2009).

According to its use, release of triclosan into the environ-
ment is mostly connected to wastewater which has also
evoked a great concern for its environmental fate (Fig. 1).
Triclosan has been widely detected not only in wastewater,
surface water, and seawater (Sabaliunas et al. 2003;
Sanchez-Prado et al. 2006; Aranami and Readman 2007;
Jahangiri et al. 2017; van Wijnen et al. 2018), but also in
sediments (Morrall et al. 2004; Dang et al. 2018), even in
human milk (Adolfsson-Erici et al. 2002; Allmyr et al. 2006;
Dayan 2007; Lu et al. 2018) and human tissue samples (Wang
et al. 2015a, b; Lu et al. 2018). Triclosan inhibits the enoyl-
acyl carrier reductase of sensitive bacteria, blocking the lipid
synthesis and inhibiting microbial growth, which is answered
by some microorganisms with formation of resistant strains
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(Dhillon et al. 2015; Ding et al. 2018). Wilson et al. (2003);
Franz et al. (2008); Ding et al. (2018) found that triclosan may
have long-term adverse effects on aquatic organisms in the
environment even at low (i.e., ng/L) concentrations.

In the last few years, investigations have addressed different
ways to remove triclosan from the environment. Triclosan can
be removed, e.g., by biodegradation (Kim et al. 2011),
photoelectrocatalytisis (Wong-Wah-Chung et al. 2007), ozona-
tion (Chen et al. 2012) electro-fenton degradation (Munoz et al.
2012), and sonoelectrochemistry (Sanchez-Prado et al. 2008).

Removal of triclosan from wastewater is mostly due to
biodegradation and sorption to sludge. However, degradation
intermediates originated from biodegradation processes have
been reported (Chen et al. 2015a). However, limited informa-
tion related to the biodegradation intermediates is currently
available.

This review summarizes biodegradation of triclosan in dif-
ferent systems, including axenic culture of microorganisms,
lab-scale activated sludge simulations, full-scale wastewater
treatment plants (WWTPs), sludge treatment system (reed
beds, composting), sludge-amended soil, and sediments. The
objective of this review is to provide a comprehensive over-
view on the respective processes relating to biodegradation,
removal efficiencies, and possible transformation products in
triclosan biodegradation.

Biological transformation of triclosan
(metabolism and metabolites)

Biological transformation reactions of triclosan have been de-
scribed and transformation products are formed by six

different reactions (Fig. 2). Generally, adduct formation is
observed as well as oxidative attacks and bond cleavage
(catabolism).

Methylation is a reaction found for several phenols (includ-
ing triclosan) in conventional activated sludge (CAS)-WWTPs
(Bester 2005; Chen et al. 2011; Waria et al. 2011; Sadef et al.
2014a; Chen et al. 2015a). In classical wastewater treatment,
triclosan-methyl was the most often reported transformation
product. It has a log kow 5.0 and thus a higher potential for
bioaccumulation than its parent triclosan (Bester 2003, 2005;
Balmer et al. 2004;Waria et al. 2011). The amount of triclosan-
methyl accounted for less than 5% of the incoming triclosan
(Bester 2005; Chen et al. 2011; Huang et al. 2014).

Conjugation reactions It has been reported that the OH-group
of triclosan can get conjugated by microorganisms by
substituting one hydrogen atom with a sulfate group (Chen
et al. 2015a). Conjugation reactions are well known for higher
organisms such as vertebrates and including plants
(Macherius et al. 2012). For plants especially glucuronation
is described (Macherius et al. 2012), but less is known about
this process in microorganisms. In addition, fungi have been
reported to conjugate triclosan via glycosylation, and
sulfatation products have been reported in activated sludge
(Hundt et al. 2000).

Hydroxylation of aromatic rings during the biodegradation
of triclosan is a typical oxidation reaction for aromatic sys-
tems, and biodegradation products such as monohydroxy-
triclosan and dihydroxy-triclosan have been reported (Kim
et al. 2011; Lee et al. 2012; Chen et al. 2015a; Kagle et al.
2015; Lee and Chu 2013) with the the structural formula of
one isomer being elucidated by Chen et al. 2015a. Veetil et al.

Table 1 Physico-chemical
parameters of triclosan (MS
Search v2.0; EPI Suit 4.0)

Molecular structure

O

Cl

Cl

Cl

OH

Chemical name 2,4,4′-trichloro, 2′-hydroxy-diphenylether

Chemical abstracts service registry (CAS) number 3380–34-5

Boiling point 363.62 °C

Melting point 136.79 °C

Synonyms 5-chloro-2-(2,4-dichlorophenoxy)phenol

Molecular formula C12H7Cl3O2

Molecular weight 290 g/mol

Water solubility 4621 μg/L

log Kow 4.2–4.76

log Koc 4.265

pKa 7.9
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(2012) isolated 77 bacterial strains tolerating triclosan, and
found that the isolated pure strains and enrichment consortium
were able to metabolize triclosan in the presence of
monooxygenase inhibitor 1-pentyne, which indicated a prob-
able involvement of a dioxygenase. Kagle et al. (2015) inves-
tigated that the initial triclosan degradation in RD1 was cata-
lyzed by an inducible class IA aromatic dioxygenase in which
tcsA and tcsB were suggested to be an inducible multicompo-
nent triclosan oxygenase. Moreover, in the presence of an
inhibitor of meta-cleavage enzyme (3-fluorocatechol), no tri-
closan degradation was observed, suggesting that triclosan

degradation proceeds via dioxygenase oxidation and followed
by ring opening (meta-cleavage) (Lee et al. 2012).

Lee et al. (2012) proposed an initial attack of regioselective
dioxygenase at the 2,3-position of triclosan, which has result-
ed in the formation of hydroxylated triclosan by wastewater
isolated Sphingopyxis strain KCY1. Whether the formation of
monohydroxy triclosan is due to other enzymes or a back
reaction of the respective dihydroxy triclosan isomers is not
known at the moment. The formation of quinones occurs but
rather seem to be typical for abiotic systems (Zhang and
Huang 2003). Establishing full mass balances on this is

Fig. 2 Possible biodegradation pathway of triclosan (Hundt et al. 2000; Kim et al. 2011; Lee et al. 2012; Veetil et al. 2012; Lee and Chu 2013; Chen et al.
2015a; Kagle et al. 2015; Mulla et al. 2016; Orhon et al. 2017; Armstrong et al. 2018)
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hindered as the respective true compounds are usually not
available and several isomers are possible.

Ether-bond cleavage to form chlorinated phenols has been
described by Lee et al. 2012; Veetil et al. 2012; Chen et al.
2015a; Mulla et al. 2016. Veetil et al. (2012) have found that
triclosan can be biodegraded under aerobic, anaerobic, and
anoxic conditions and phenol, catechol and 2,4-dichlorophe-
nol were among the products. Ether bond cleavage of mono
and dihydroxylated triclosans could also produce 2,4-dichlo-
rophenol by Sphingopyxis strain KCY1 under aerobic condi-
tions (Lee et al. 2012). 4-chloro- and 2,4-dichloro-phenol ap-
peared when mono and dihydroxylated triclosans were detect-
ed during biodegradation, indicating that bond cleavage oc-
curred on both sides of the ether bond of triclosan (Chen et al.
2015a). It is, however, unknownwhether a selected ether bond
cleavage exists, or whether the observed metabolites are result
of a degradation/mineralization of the other ring.

Oligomerization was initially reported by Cabana et al.
(2007). Under exposure to white rot fungus Coriolopsis
polyzona, triclosan dimers, trimers, and tetramers were pro-
duced via the formation of C-C or C-O bonds. Although triclo-
san is transformed into high molecular weight metabolites, the
triclosan structure remains in the polymer, which could make
destruction of this compoundmore difficult. However, the ether
bond of the oligomer can be cleaved to form chlorinated phe-
nols (Lee et al. 2012; Veetil et al. 2012; Mulla et al. 2016).

Degradation of triclosan by axenic cultures
of microorganisms

Observing degradation of triclosan by bacteria is limited as
this compound is a strong antimicrobial agent. Dann and
Hontela (2011) and Wilson et al. (2003) have demonstrated
that triclosan is highly toxic to a wide range of bacteria. Thus,
experiments to degrade triclosan with bacteria at high concen-
trations can only be conducted with microorganisms which
are resistant to triclosan, which gives sometimes results that
cannot easily transferred to real environmental conditions un-
der which triclosan occurs at lower concentrations and thus
the resistance towards triclosan is less important.

Triclosan degradation in axenic bacteria cultures

Usually, axenic cultures are used to identify which organisms
have the ability to degrade triclosan, and under which condi-
tions the microorganisms are able to do this. Typically, these
experiments are conducted with triclosan as single carbon
source and high (i.e., mg/L) concentrations are used (catabolic
process).

To date, only a few bacteria have been isolated that are able
to metabolize triclosan. Meade et al. (2001) isolated two
triclosan-resistant bacteria from compost, water, and soil

samples, and found that, Pseudomonas putida TriRY and
Alcaligenes xylosoxidans subsp. denitrificans TR1, were able
to utilize triclosan catabolically (i.e., as a sole carbon source).
Triclosan (0.4 mg/L) removal in the liquid growth medium was
94% within 96 h by P. putida TriRY and 87% within 228 h by
A. xylosoxidans TR1. Hay et al. (2001) isolated an auxotrophic
Sphingomonas-like organism, strain RD1 from activated
sludge, which was able to detoxify and mineralize triclosan.
Approximately 35% of the 14C triclosan was mineralized to
14C CO2, when the strain RD1 was grown on 500 mg/L triclo-
san for 13 days. In addition, triclosan has also been found to be
degraded catabolically by Sphingomonas sp. PH-07 (Kim et al.
2011), Sphingopyxis sp. KCY (Lee et al. 2012),Mycobacterium
vaccae JOB5 and Rhodococcus jostii RHA1 (Lee and Chu
2013), Nitrosomonas europaea (Roh et al. 2009),
Methylobacillus (Lolas et al. 2012) and Sphingomonas sp.
YL-JM2C (Mulla et al. 2016). Lee and Chu (2013) identified
active triclosan degraders in a triclosan-degrading enrichment
culture using stable isotope probing (SIP) with universally 13C-
labeled triclosan, and demonstrated that Defluvibacter (α-
Proteobacteria), Alicycliphilus (β-Proteobacteria), and
Stenotrophomonas (γ-Proteobacteria) are capable of assimilat-
ing the 13C of the triclosan. Thus, in spite of the inherent chal-
lenges in identifying bacteria that are able to degrade a bacteri-
cide, quite a bit of different organisms able to degrade triclosan
catabolically in axenic cultures have identified.

Fungi

In contrast to bacteria, fungi are often used in biological treat-
ment studies due to their high tolerance and ability to remove
pollutants even at high concentrations. They were reported to
be involved in the detoxification and degradation of polycy-
clic aromatic hydrocarbons (Sutherland et al. 1992).

Hundt et al. (1999) suggested that glucosylating and
xylosylating enzymes may play a role in the detoxification
of xenobiotics. They found that the ligninolytic Trametes
versicolor was able to metabolize triclosan by converting it
to methylated, glucosided, and otherwise carbohydrated con-
jugates, which suggested the involvement of a UDP-
xylosyltransferase in the degradation process. Opposite to
that, the fungus P. cinnabarinus was reported to be able to
methylate the hydroxyl group of triclosan during cultivation
(Hundt et al. 2000). Cajthaml et al. (2009) found that almost
all the tested ligninolytic fungi (eight strains) were able to
degrade triclosan efficiently (3 or 5 mg/L in 14 days), which
indicated the involvement of ligninolytic enzymes in the deg-
radation process, however no clear link between enzyme ac-
tivities and degradation rates was reported. Fungus
Aspergillus versicolorwas able to tolerate the highest triclosan
concentration (15.69 mg/L). Murugesan et al. (2009) have
reported laccase-mediated triclosan transformation and detox-
ification through oligomerization and ether-bond cleavage in
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the presence and absence of redox mediators. Inoue et al.
(2010) investigated triclosan degradation in manganese per-
oxidase (MnP), laccase and the laccase-mediator system with
1-hydroxybenzotriazol (HBT), and reported thatMnP is effec-
tive in detoxifying triclosan. In addition, laccase-mediated ox-
idation and detoxification of triclosan have recently been dem-
onstrated using laccases isolated from Trametes versicolor
and Coriolopsis polyzona (Kim and Nicell 2006; Cabana
et al. 2007, 2011). Laccase from Pleurotus ostreatus was also
reported to be effective in removing triclosan, the main prod-
uct being oligomerized triclosan (Sun et al. 2017). The
enzyme-catalyzed oxidation of triclosan was however signif-
icantly affected by pH and temperature (Kim and Nicell 2006;
Cabana et al. 2007, 2011).

Algae

Uptake of triclosan by algae plays a significant role in the
removal and detoxify triclosan in aquatic environments, as
triclosan is bioaccumulating in freshwater algae (Roberts
et al. 2014). Wang et al. (2013) investigated the removal of
triclosan in water by using a ubiquitous green alga, Chlorella
pyrenoidosa, which was able to remove more than 50% of
triclosan (100 to 800 μg/L) within 1 h. Bai and Acharya
(2016, 2017) investigated triclosan removal from Lake
Mead water mediated by the green alga Nannochloris sp. In
these experiments, nearly 100% removal after 7 days of incu-
bation was detected. Wang et al. (2018b) reported that 99.7%
of 400 g/L triclosan were removed within 1 day by three
common freshwater microalgae: Chlorella pyrenoidosa,
Desmodesmus sp., and Scenedesmus obliquus.

Understanding the biodegradation and biotransformation
of triclosan by axenic cultures provides information on using
microbial consortia to remove triclosan in the environment.
However, extrapolation of these lab incubations to the envi-
ronment or wastewater treatment should be performed with
caution as these are considerable more complex systems.

Degradation of triclosan by microbial
consortia

Degradation in activated sludge in lab-based
simulations

To fill the gap in mass balance between triclosan removal by
biodegradation and the total removal by WWTPs, laboratory
treatments are conducted to gain insight into the behavior of
triclosan. Chen et al. (2011) investigated the degradation of
triclosan in laboratory activated sludge systems, and demon-
strated that this compound can be degraded quickly under
aerobic condition, while it is rather persistent under anaerobic
and anoxic conditions.

Previous studies have indicated in activated sludge that
about 5% of triclosan is biomethylated to triclosan-methyl
(Bester 2003, 2005; Chen et al. 2011) and another 5% of
triclosan is transformed to bound residues (Bester 2003),
while approximately 10% was sorbed into sludge (Wick
et al. 2011; Chen et al. 2011). Recently, Chen et al. (2015a)
have reported that degradation products of triclosan, i.e., 2,4-
dichlorophenol, monohydroxy triclosan isomers, and triclo-
san-O-sulfate represents 7, 10, and 7% of the initial triclosan,
respectively, while the formation of dihydroxy triclosan is
relatively less pronounced and slower. These lab-based simu-
lation studies are essential to gain additional understanding of
the triclosan removal process in activated sludge and are able
to provide parameter guidelines for enhancement of triclosan
removal in WWTPs.

It has been suggested that the removal efficiencies of tri-
closan in activated sludge simulation studies dependent on the
initial concentrations. For example, a biodegradation study
with an initial concentration of 0.1 mg/L yielded a removal
of 61–91% (Stasinakis et al. 2010), whereas a study starting
with 5 mg/L reported a removal of 99.8% (Chen et al. 2015a).
In a static unfed laboratory-scale activated sludge reactors
under aerobic conditions, the removal rates of triclosan were
relatively low (75–86%) when the starting concentration was
low (≤ 0.5 mg L−1) and reached higher values (> 99%) when
the starting concentration was high (≥ 1 mg L−1) (Chen et al.
2011). However, the half-lives (54–86 h) of triclosan in these
experiments were not dependent on the initial concentrations
(Chen et al. 2011).

Stasinakis et al. (2010) demonstrated the importance of
sludge retention time (SRT): operation with SRT = 20 d gave
higher removal than operation with SRT = 3–20 d. Armstrong
et al. (2018) reported that removal of triclosan is enhanced
with increasing hydraulic retention time (HRT), SRT, and
temperature in activated sludge system. Chen et al. (2011)
have conducted lab-scale activated sludge incubation experi-
ments under aerobic, anaerobic, and anoxic conditions and
reported the fastest triclosan removal (49% within 80 h) and
its highest transformation rate to triclosan-methyl (16%) for
aerobic conditions, while no removal was observed under an-
aerobic or anoxic conditions. Taştan and Dönmez (2015) re-
ported that triclosan biodegradation increased when pH was
increased from five to seven.

The lab-scale studies on removal and biodegradation rate
of triclosan in activated sludge incubations cannot always be
fully validated with full-scale operation. The most striking
reason is that lab experiments are often conducted with mg/
L triclosan, while at full-scale usually 1–10 μg/L is experi-
enced (Tables 2 and 3). However, also operational instabilities
such as seasonal variations of temperature, rainfall could be
reasons for the differences between laboratory and full-scale
studies. Nevertheless, the lab-scale studies provided valuable
opportunities to assess scaling up to full-scale measurements.
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Full-scale wastewater treatment plants (WWTPs)

Widespread use of triclosan provides a number of path-
ways which all end in wastewater and thus finally reach
the WWTPs. The influent concentrations of triclosan in
WWTPs can vary dramatically according to usage pattern
from below 1 μg/L to exceeding 100 μg/L (with
100 μg/L being very untypical for European wastewater
see Table 3 and references within). Wastewater (inflow
as well as effluent) concentrations are thus usually above
its predicted-no-effects concentration (PNEC) of
0.05 μg/L, and even exceeded the low-observed-effect-
concentration (LOEC) of 0.015 μg/L (Singer et al. 2002;
Wilson et al. 2003).

Most WWTPs rely on microbial processes to remove
and degrade organic pollutants from wastewater. As tri-
closan concentrations usually are in the μg/L range and
the BOD is in the several hundred mg/L, it is most prob-
able that triclosan removal occurs not as catabolic degra-
dation but as co-degradation, i.e., the microbial commu-
nities take their energy and carbon to grow on from other
substrates. In wastewater treatment, three types of biolog-
ical treatment are dominating: activated sludge, trickling
filters, and rotating biological contactors—with activated
sludge being clearly the most widespread used technolo-
gy. In WWTPs, triclosan can be removed by (a) mineral-
ization, (b) transformation by oxidation or reduction, and
(3) sorption to sludge (Latch et al. 2003; Bester 2003,
2005; Yu et al. 2006). In fact, both biodegradation and
sorption to activated sludge contribute to the removal of
triclosan in WWTPs.

In activated sludge,WWTPs about 30–40% of the triclosan
partitions into sludge as triclosan is relatively lipophilic (log
Kow of 4.2–4.8; log Koc of 4.3) (Bester 2003, 2005; Coogan
et al. 2007; Heidler and Halden 2007; Kumar et al. 2010;
Nakada et al. 2010). On the other hand, this means that most
of the removal (30–50% of the total mass fraction) occurs due
to biodegradation processes (Bester 2005; Heidler and Halden
2007; Kumar et al. 2010; Nakada et al. 2010). Total removal
of triclosan is thus adding up to typically > 90% in classical
activated sludge WWTPs.

The rate of biodegradation of triclosan is highly vari-
able and dependent on the operational parameters of
WWTPs such as exposure time (hydraulic retention time),
oxygen concentration, as well as the microbial community
(which is operationally influenced by sludge retention
time). WWTPs with activated sludge treatment process
generally have hydraulic retention times of 10 to 40 h
and high dissolved oxygen levels (1.5–2.0 mg/L) in the
BOD removal and nitrification part of the plants. These
parts of the WWTP have been shown to be responsible for
the high removal of triclosan of 76–99% (Table 3).
However, in WWTPs with fixed-film biological processesT
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such as trickling filters and rotating biological contactors,
the hydraulic retention time is shorter (1–4 h) and the
dissolved oxygen levels are relative low (0.3 mg/L)
(Mathys et al. 1997). These WWTPs showed relatively
low removal of triclosan with a large variation (58–97%)
(Table 3).

Pycke et al. (2014) investigated the biodegradation of tri-
closan in sludge from 3 different WWTPs with a broad range
of wastewater flows. However, the hydraulic retention time
(10–40 h), sludge retention time (14–20 days), and dissolved
oxygen concentration (4–10 mg/L) are clearly influencing the
overall efficiency of triclosan removal prior to parameters like

temperature, pH, and loading rate (Stasinakis et al. 2010;
Chen et al. 2015b; Inyang et al. 2016).

Though it is improbable that the triclosan removal is gen-
erally coupled to other processes than BOD removal, there are
some indications towards the processing of triclosan might in
some cases also be linked to ammonia-oxidizing bacteria in
nitrifying activated sludge (Roh et al. 2009).

Generally, all biological treatment systems are able to me-
tabolize triclosan, as it seems to be one of the easier to degrade
xenobiotic compounds. Whether and to what extent this is
effective depends on the reaction speed in the respective sys-
tem and the residence time in it.

Table 3 Removal efficiencies of triclosan in full-scale WWTPs

Type of treatment plants Location Influent Effluent Percentage removal Reference

Activated sludge Switzerland 0.6–1.3 0.07–0.65 76–92 Lindström et al. 2002

0.04–0.2 0.01–0.1 94 Singer et al. 2002

UK 21.9 1.1 95 Sabaliunas et al. 2003

0.67–5.12 ND-0.1 95–98 Thompson et al. 2005

Germany 1 0.05 95 Bester 2003

7.3 ± 1.5 0.3 ± 0.1 96 Bester 2005
4.8 ± 0.55 0.62 ± 1.55 87

Greece 0.45 0.076 83 Pothitou and Voutsa 2008

0.42–1.14 0.14–0.18 84–87 Villaverde-de-Saa et al. 2010

Spain 0.94 <LOQ 99 Gonzalez-Marino et al. 2009

0.31 ± 0.01 0.03 91 Regueiro et al. 2009

0.73 ± 0.09 0.07–0.1 86–90 Montes-Hernandez et al. 2009

USA 5.2–10.7 0.24–0.41 95–96 McAvoy et al. 2002

1.1 0.027 97.5 Kanda et al. 2003

3–3.6 0.028–0.072 97–99 Thomas and Foster 2005

4.7 ± 1.6 0.07 ± 0.06 98 ± 1 Heidler and Halden 2007

3.44 0.19 94 Fair et al. 2009

18.85 1.04 95 Kumar et al. 2010
13.7 0.18 99

86.16 5.37 94

32.64 0.27 99

4.53 0.12 97 Buth et al. 2011

0.45 0.036 92

Japan 0.27–0.75 0.02–0.4 86–93 Nakada et al. 2006

2.7 0.26 90 Nakada et al. 2010
11.9 0.27 98

China 142.0 ± 16.5 22.5 ± 1.4 84 Wu et al. 2007

Israel 0.4–2.8 ND-0.2 27–84 Dotan et al. 2016

Australia 0.59–0.81 0.02–0.43 72–93 Ying and Kookana 2007

Trickling filter UK 7.5 0.34 95.5 Sabaliunas et al. 2003

0.99–3.7 ND-0.3 86–97 Thompson et al. 2005

USA 3.80–16.6 1.61–2.7 58–87% McAvoy et al. 2002

3.7 0.13 96.5 Kanda et al. 2003

Rotating biological contactors UK 1.28–3.89 0.081–1.12 58–96 Thompson et al. 2005
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Degradation in sludge post-treatment (composting
and reed beds)

Activated sludge WWTPs produce excess sludge that can be
incinerated, used directly on land as fertilizer or used on land
after post treatment, e.g., by composting or treatment in sludge
readbeds.

Composting (aerobic) under well-controlled conditions is
an effective method in humidifying the organic matter in the
sludge and thus stabilizing the material; additionally, this pro-
cess is suited to biodegrade organic micro-pollutants (Epstein
1997). For instance, degradation of triclosan in sewage sludge
during thermophilic composting was investigated by Poulsen
and Bester (2010) and Sadef et al. (2014b) who reported half-
lives of 25 days for triclosan in full-scale sludge composting
windrow and 33 days in sludge composting bench-scale mea-
surements (Sadef et al. 2015). Pakou et al. (2009) suggested
that the efficiency of composting is generally dependent on
the operational conditions such as initial concentration of pol-
lutants, oxygen availability, temperature, pH, and moisture
content during the process. Sadef et al. (2014a) has reported
that removal rates depended strongly on temperature and for
triclosan an optimal temperature for removal is 30–50 °C. The
results from Sadef et al. (2015) showed that micro-pollutant
removal rates decreased when the oxygen concentration de-
creased or inorganic nitrogen content increased. In addition,
changes in biosolids/wood shaving ratio have significantly
impact on micro-pollutant removal in other experiments
(Das and Xia 2008).

Reed beds are often used in small WWTPs for inexpensive
sludge dewatering as well as in reducing volume, breaking
down organic matter and increase the density of sludge
(Nielsen 2003, 2005; Gustavsson et al. 2007). Chen et al.
(2009a, b) have found degradation of triclosan in reed beds
with half-life of 315–770 days in full-scale and 330–462 days
in lysimeters. Considering 10-year production cycle of reed
beds (Nielsen 2003), more than 95% of triclosan can be re-
moved even though the reaction rate is relatively slow.

Degradation in sludge-amended soil

Triclosan has been found in soils due to irrigation with
reclaimed water and application of sewage sludge (biosolids),
which lead to adverse effects on soil organisms, crops and
even human beings (Qin et al. 2015). Concentrations of triclo-
san in sludge (biosolids) typically range from 1 to 10 mg/kg
(Bester 2003). In agricultural praxis, only a small fraction of
sludge is amended into the soil.

Degradation of triclosan in soils generally followed first-
order kinetics, with half-lives ranged from days to years. The
degradation rate varied with soil properties and incubation
conditions (Wu et al. 2009). For example, in biosolids
(sludge)-amended soils, the half-lives of triclosan were 42 days

in a silty clay loam, 50 days in a fine loam, 108 days in a coarse
loam (Waria et al. 2011), while 107 days were determined in
loam (Lozano et al. 2010, 2013), and 182 to 193 days in sandy
clay loam (Walters et al. 2010). Ying et al. (2007) incubated
triclosan in loamy soil with 1 mg/kg of triclosan, and found
92% removal of triclosan within 70 days under aerobic condi-
tion, while triclosan was persistent under anaerobic conditions.
Butler et al. (2011) dosed 10–1000 mg/kg triclosan with three
different soils (sandy loam, clay, and loamy sand) and indicat-
ed that triclosan removal was inversely correlated to triclosan
dose, soil organic matter, and clay content. Butler et al. (2012)
reported that degradation of triclosan in soil was relatively slow
in winter period due to the low temperature and soil moisture.
Moreover, Al-Rajab et al. (2010) evaluated the effect of depth
of placement of biosolids in the soil profile on the triclosan
dissipation rates under semi-field conditions. This group re-
ported a faster dissipation of triclosan in subsurface (half-life
of 17.3 days) than surface (half-life of 80 days) applied bio-
solids. Removal of triclosan in soil could be attributed to bio-
degradation, adsorption, leaching, and possibly the formation
of non-extractable residues (Butler et al. 2012).

Degradation in sediments

Sediments could be an important sink for triclosan in aquatic
environment. However, little is known about the fate and
behavior of triclosan in sediment systems. Singer et al.
(2002) investigated the 30-year-old sediment layer in lake
Greifensee, indicating that triclosan degradation has to be very
slow in these sediments. The fate of triclosan may also be
affected by its bioavailability (Huang et al. 2014). Lin and
Gan (2011) studied the adsorption of triclosan onto river sed-
iments and indicated that the sorption capacity is highly de-
pendent on content of organic matter, clay, BET surface area,
and pH value. Degradation of triclosan was more rapid in
water-sediment systems than in pure sediment systems: The
half-life ranged from 32 to 62 days in water-sediment systems
(Huang et al. 2014) and 55 to 239 days in sediment systems
(Huang et al. 2015).

Research needs

This review reveals that triclosan can be removed in various
systems via biodegradation, while the degradation rate is high-
ly dependent on load of triclosan and operational conditions
including composition of microbial community. Biological
transformation products have been reported by several inves-
tigators; however, knowledge on biodegradation pathways
need to be further developed to close the mass balance of
triclosan. Further work should be focused on the investigation
of the fate and toxicity of triclosan metabolites in the environ-
ment. In addition, a study on the effects of triclosan metabo-
lites on plants, animals, and humans could be useful for health
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risk assessment of triclosan. This is to some extent hampered
by the fact that only a minor fraction of the triclosan metabo-
lites are available.

Single organisms are known to degrade triclosan in axenic
cultures; it is however unknown which species in a sludge
community indeed are performing the degradation, and what
is the ecology that steers the degradation processes.

Several laboratory studies determining the biodegradation
of triclosan under a certain conditions are available. To con-
tinuously optimize the triclosan removal rates as well as de-
toxify triclosan and its metabolites, more research is needed
especially in realistically scaled up pilot reactors.
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