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Abstract
Aims: Although many studies have investigated how biodiversity loss impacts eco-
system functioning, we still have little understanding of how it interacts with arbus-
cular mycorrhizal fungi (AMF) to affect plant communities in natural grasslands. Here, 
we conducted a removal experiment to examine how AMF suppression and plant 
functional group (PFG) removal affect above-ground productivity and community 
composition in a grassland, and to determine whether AMF alter the compensation 
ability of the remaining plants.
Location: Inner Mongolian grassland, China.
Methods: We suppressed AMF activities by applying Topsin®-M as a soil drench and 
selectively removed PFGs to give three treatments (no removal, removal of C3 grasses 
and removal of both C4 grasses and forbs). We then measured various plant, soil and 
AMF parameters for each treatment combination.
Results: The addition of Topsin-M effectively reduced mycorrhizal root colonization 
across all of the PFG removal treatments. Furthermore, above-ground productivity 
was significantly impacted by both the presence of AMF and the removal of PFGs. 
When C3 grasses were removed, neither C4 grasses nor forbs compensated for the 
biomass decline, and the presence of AMF did not affect their compensation ability. 
Conversely, C3 grasses could completely compensate for the removal of both C4 
grasses and forbs, but the presence of AMF reduced their compensation ability. The 
removal of both C4 grasses and forbs dramatically increased the shoot P content of 
C3 grasses but AMF slightly decreased this. In contrast, AMF significantly increased 
the plant P content of C4 grasses and forbs across all three PFG removal treatments.
Conclusion: Our results highlight the importance of AMF in structuring natural 
above-ground productivity under various biodiversity loss scenarios, and indicate 
that AMF will be able to modify vegetation dynamics in response to the future loss of 
plant diversity.

K E Y W O R D S

arbuscular mycorrhizal fungi, biodiversity, compensation, ecosystem functioning, grassland 
ecosystem, plant functional group, plant productivity, removal experiment

1  | INTRODUC TION

The effect of biodiversity loss on ecosystem functions and services 
has attracted a large amount of interest among ecologists in recent 

years (Hooper et al., 2005; Loreau et al., 2001; Tilman, Reich, & 
Isbell, 2012). However, although it has been shown that biodiversity 
loss greatly affects ecosystem structure and functioning in artificial 
communities (Cardinale et al., 2012), it has been argued that these 
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results and conclusions cannot be generalized to native communities 
because synthetic communities only contain particular plant species 
and assemblages (Duffy, 2009; Jiang, Wan, & Li, 2009). Specifically, 
plant diversity lies at the core of the links between biodiversity and 
ecosystem functions (Isbell et al., 2011). Therefore, knowledge of 
vegetation dynamics in natural ecosystem responses to plant diver-
sity loss is important to understand the possible effects of future 
biodiversity loss.

A growing body of research has demonstrated that plant diver-
sity loss affects vegetation properties (e.g., primary productivity 
and plant species richness), plant-available nutrients in the soil and 
net ecosystem C exchange (Kong et al., 2011; Maestre et al., 2012; 
McLaren & Turkington, 2010; Pan et al., 2016; Wardle et al., 1999; 
Winfree, Fox, Williams, Reilly, & Cariveau, 2015). Furthermore, re-
cent experimental studies have shown that plant diversity loss also 
affects the structure and functioning of the below-ground commu-
nity (Cardinale et al., 2012; Chen et al., 2016; Marshall, McLaren, & 
Turkington, 2011). For example, Chen et al. (2016) found that the 
loss of dominant plant functional groups (PFGs) in a temperate 
ecosystem altered the below-ground communities (microbes and 
nematodes), whereas the loss of sub-dominant PFGs had no effect. 
Here, PFGs are defined as the groups of plants in a community that 
share similar plant morphological characteristics and show similar 
growth responses to environmental changes, and therefore have 
similar influences on main ecosystem processes (Lavorel, McIntyre, 
Landsberg, & Forbes, 1997). However, Marshall et al. (2011) found 
that the soil microbial community in a northern Canadian grassland 
ecosystem was relatively insensitive to the loss of PFGs. Therefore, 
differences in the responses of soil microbes to PFG loss might relate 
to specific characteristics of different grasslands.

Arbuscular mycorrhizal fungi (AMF) are an important component 
of the soil microbial community as they play a critical role in alter-
ing plant community diversity, composition and primary produc-
tivity (Hartnett & Wilson, 1999; van der Heijden et al., 1998). AMF 
improve the uptake of P in host plants, which, in return, provides 
them with photosynthates for their survival (Smith & Read, 2008). 
Experiments with artificial communities have demonstrated that 
plant community diversity affects AMF properties such as mycor-
rhizal colonization and the number and species composition of the 
spores (Burrows & Pfleger, 2002; Chen, Tang, Fang, & Shimizu, 2004; 
van der Heijden et al., 1998), whereas field studies found that the 
PFG removal did not affect AMF colonization or spore density in a 
mountain shrubland (Urcelay et al., 2009) or a northern grassland 
(Marshall et al., 2011), indicating AMF community resilience to ex-
perimental PFG loss. However, we still lack a comprehensive under-
standing of how AMF interact with their host plants under different 
diversity loss scenarios in natural grasslands.

A major feature of native grasslands is that the PFGs have dif-
ferent abundances within a particular community (Ives & Cardinale, 
2004). Previous studies have shown that loss of dominant PFGs 
has a greater impact on ecosystem functions, such as primary pro-
ductivity and soil N use, than the loss of rare PFGs (Longo, Seidler, 
Garibaldi, Tognetti, & Chaneton, 2013; Pan et al., 2016; Winfree 

et al., 2015). For example, Pan et al. (2016) found that the loss of 
two dominant PFGs from a C3 grass-dominated grassland resulted in 
declines in plant community biomass, even when the sub-dominant 
PFGs were present. However, McLaren and Turkington (2010, 2011) 
found that the biomass declines that were induced by the loss of 
dominant PFGs in a forb-dominated grassland were partly compen-
sated for by sub-dominant PFGs. Thus, it appears that dominant and 
sub-dominant PFGs may have different and/or context-dependent 
effects on primary productivity. Moreover, the mycorrhizal depen-
dence of sub-dominant species or PFGs determines the effects 
of AMF on plant community composition (Urcelay & Díaz, 2003). 
Whereas, to the best of our knowledge, there is little understand-
ing of how AMF alter the growth responses of dominant and sub-
dominant PFGs under PFG loss.

Pioneering experiments have shown that the effects of biodiver-
sity loss on ecosystem properties depend on the identities of not 
only the lost PFGs but also those that remain (Cardinale et al., 2012; 
McLaren & Turkington, 2010), as these can expand to replace those 
that were lost through a process known as compensation (Adler & 
Bradford, 2002; Pan et al., 2016). It has previously been found that 
grasses colonize quickly after the removal of other species, whereas 
forbs show no increase in biomass (McLaren & Turkington, 2011). 
In addition, PFGs are also considered to be more important than 
other factors for predicting plant mycorrhizal growth responses, 
with forbs showing more positive responses to AMF than C3 grasses 
(Hoeksema et al., 2010). However, few studies have examined 
whether AMF alter the degree of biomass compensation after PFG 
removal.

The aim of this study was to improve our understanding of the 
effects of AMF on native vegetation dynamics under PFG loss by 
conducting a removal experiment in the Inner Mongolia grassland, 
China. Removal experiments are particularly useful in ecosystems 
where artificial communities are difficult to create, such as Arctic 
and temperate ecosystems that are dominated by long-lived pe-
rennial species (McLaren & Turkington, 2011; Wu et al., 2015). 
Specifically, we addressed the following questions: (a) how do AMF 
and PFG removal affect above-ground productivity, community 
composition and plant nutrient uptake (P); and (b) do AMF also alter 
the compensation ability of the remaining plants after PFG removal?

2  | METHODS

2.1 | Study site

This experiment was conducted in a semi-arid steppe (42°01′ N, 
116°17′ E; 1,324 m a.s.l.) in Inner Mongolia, China. This region has 
a monsoon climate, with a long-term (1953–2010) mean annual pre-
cipitation of ~378 mm and mean annual temperature of 2.1°C. The 
soils are classified as Calcis-orthic Aridisol and the vegetation type is 
classified as a temperate steppe, in which the dominant plant species 
are mainly perennial herbs such as Artemisia frigida and Stipa krylovii 
(Bai et al., 2015). More than 80% of the plant species at the study site 
have been identified as mycorrhizal plants (Bao & Yan, 2004; Tian, Gai, 
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Zhang, Christie, & Li, 2009). Previous studies have shown that PFG 
richness is more strongly related to primary productivity than plant 
species diversity (Bai, Han, Wu, Chen, & Li, 2004; Hooper et al., 2005), 
and that C4 grasses and forbs have stronger mycorrhizal dependen-
cies than C3 grasses (Hoeksema et al., 2010; Lin, McCormack, & Guo, 
2015). Therefore, prior to our study, we categorized the initial plant 
community into three PFGs: C3 grasses, C4 grasses and forbs, which 
accounted for ~14.77%, 11.16% and 74.06%, respectively, of the total 
above-ground biomass (Yang et al., 2014).

2.2 | Experimental design

From May 2015 to Sept 2017, we carried out a removal experiment 
using a two-factor random block design, which included factorial com-
binations of fungicide (F; no fungicide vs. fungicide treatment) and 
PFG removal (removal; no removal, removal of C3 grasses, and removal 
of both C4 grasses and forbs), as well as one treatment with no water 
or fungicide addition (Supporting information: Appendix S1: Table S1, 
S2, Supporting information: Appendix S2: Figure S1). The plots were 
2.2 m × 2.2 m in size and were spaced 2.0 m apart. The AMF suppres-
sion (fungicide treatment) plots received Topsin®-M as a soil drench 
(1.25 g of the active ingredient in 1.875 L water per m2 every 2 weeks), 
while the control (mycorrhizal treatment) plots only received 1.875 L 
water per m2 every 2 weeks, and both treatments were simultaneously 
conducted from May to Sept of each year (2015–2017). Previous field 
studies have used the fungicide benomyl to suppress AMF (Wilson, 
Rice, Rillig, Springer, & Hartnett, 2009; Yang et al., 2014; Zhang et al., 
2016). However, here, we chose to use Topsin-M because it is a suc-
cessful alternative for the suppression of AMF that has the same mode 
of action as benomyl (Wilson & Williamson, 2008) and can effectively 
reduce the mycorrhizal colonization of roots to ~60%–80% compared 
with those in control plots (McCain, Wilson, & Blair, 2011; Wilson & 
Williamson, 2008).

For the PFG removal treatments, the target PFGs were com-
pletely removed by clipping the above-ground parts of the plants 
and tillering the nodes at 0–5 cm soil depth to minimize physical dis-
turbance to the soil (Chen et al., 2016). To ensure that the growth of 
the targeted PFGs stopped or at least was significantly suppressed, 
we clipped the plants in early Jun of each year.

2.3 | Sampling procedure

We established one permanent quadrat (1 m × 1 m) in each plot to 
estimate plant species richness in early Aug of each year. In mid-
Aug of each year, we then clipped all of the plants to ground level in 
one sampling quadrat (0.5 m × 1.0 m) within each plot to determine 
the above-ground biomass of the community and each plant spe-
cies. All plants were sorted into species and oven-dried at 65°C for 
48 hr before being weighed. The dry weight of each plant species 
was recorded separately and expressed as the shoot biomass per 
m2. Unlike the determination of shoot biomass, the root biomass of 
each species/PFG cannot be determined precisely due to the roots 
of plants being tangled in the field. The relatively coarse roots of 

individual plant species could be collected after washing with water 
(Bai et al., 2015), but fine roots could not be completely isolated 
because they were intermingled with roots of other plants (van der 
Heijden et al., 2006). Therefore, we did not measure the root bio-
mass of each species/PFG in the present study. In addition, we cal-
culated the Shannon–Wiener index (H′) for each sampling occasion 
using the equation:

where S is the number of plant species in a given plot and pi is the 
relative biomass of species i in a plot.

In mid-Aug of each year, we also randomly collected three soil 
cores (10 cm depth and 7 cm diameter) from the outside area of 
the permanent quadrat and the previously sampled quadrats in 
each plot, which were combined in situ into one composite sample. 
Stones and roots were removed from each soil sample (~200 g) by 
sieving through a 2-mm mesh, and the roots were then separated 
from the stones by washing with water. In addition, to assess the 
impacts of fungicide application and PFG removal on soil microbes, 
the soil samples (~15 g) were frozen at −80°C for phospholipid fatty 
acid (PLFA) analysis in 2016 (see below).

2.4 | Calculation of the compensation index

To evaluate the compensation capabilities of PFGs and their poten-
tial interactions with AMF, we calculated the compensation index 
(CI) for each treatment using the following equation:

where Oi is the observed shoot biomass of PFG i in the depleted 
community, Ei is the expected shoot biomass of PFG i in the depleted 
community (equal to the yield of PFG i in the full community), n is the 
set of PFGs in the depleted community, and N is the set of PFGs in 
the full community. CI < 0 indicates no compensation, 0 < CI < 1 indi-
cates partial compensation, CI = 1 indicates complete compensation, 
and CI > 1 indicates overcompensation (Adler & Bradford, 2002).

2.5 | Laboratory analyses

To estimate the effects of field treatments on the main function of 
AMF in the host plant growth (P acquisition), we analysed the shoot 
P concentrations of C3 grasses, C4 grasses and forbs that produced 
sufficient shoot biomass for measurement. After digesting the 
shoots with perchloric and nitric acids (Bélanger & Rees, 2007), the 
shoot P concentration was measured using a spectrophotometer, 
with ammonium molybdate and ascorbic acid as colour reagents.

Soil nutrient availablity can also alter AMF effects on plant 
growth and P acquisition (Johnson, Wilson, Bowker, Wilson, & Miller, 
2010; Johnson, Wilson, Wilson, Miller, & Bowker, 2015). To estimate 
potential effects of field treatments on soil chemical properties, we 
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measured soil available P and inorganic N. The soil available P was 
determined using the Olsen method (Bélanger & Rees, 2007), the 
soil inorganic N (NH+

4- N and NO−
3-N) contents were measured with 

a flow injection autoanalyzer (Flowsys; Ecotech, Germany) and soil 
moisture was measured by oven-drying a fresh soil sample from 
each plot (20 g) at 105°C for 24 hr.

To estimate the influences of treatments on the extra-radical and 
intra-radical abundance of AMF, we analysed PLFA concentration in 
soil and mycorrhizal root colonization, respectively. Qualitative and 
quantitative PLFA analyses were performed using a modification 
of the Bligh and Dyer method (Frostegard, Tunlid, & Baath, 1991) 
with an Agilent 6890 gas chromatograph (Agilent Technologies, 
Palo Alto, CA, USA) and Sherlock software (MIDI, Newark, NJ, 
USA). The following fatty acids were used as indicators: 16:1ω5c 
for AMF; 18:2ω6,9 for other fungal PLFAs (Schnoor, Martensson, & 
Olsson, 2011); a15:0, a17:0, i15:0, i16:0, i17:0, 16:1ω7, 17:0, cy17:0 
and cy19:0 for the total bacterial PLFAs (Buyer, Roberts, & Russek-
Cohen, 1999; Moore-Kucera & Dick, 2008).

Mycorrhizal root colonization could not be determined precisely 
for each species due to the roots of plants being tangled in the field. 
To estimate AMF root colonization, the tangled roots were cut into 
1 cm root segments, which were cleaned in 10% (w/v) potassium 
hydroxide (KOH) at 90°C in a water bath for 2 hr, acidified with 2% 
(w/v) hydrochloric acid (HCl) for 5 min, and then washed and stained 
with 0.05% (w/v) trypan blue. We examined 30 root segments from 
each root sample microscopically to estimate AMF root colonization 
(Trouvelot, 1986).

2.6 | Statistical analyses

We found no significant difference between the treatment with 
no water or Topsin-M addition and the treatment with water and 
no Topsin-M addition in terms of the AMF properties and shoot 

biomass of each PFG. We therefore removed the former treatment 
from all subsequent analyses.

To test the effects of year and treatments on each of the plant, 
soil and AMF parameters, we used repeated measures ANOVA, with 
the AMF and PFG removal treatments included as between-subject 
factors and year included as a within-subject factor. Because year 
had a significant effect for nearly all of the parameters tested (shoot 
biomass, species richness, Shannon–Wiener index, compensation 
index and shoot P content), a separate two-way ANOVA (GLM) was 
performed for each year to test the effects of treatments and their 
interactions. A two-way ANOVA was used to analyse the effect of 
treatments on the soil microbial PLFA concentrations because these 
were estimated only once in 2016. We also used a two-way ANOVA 
to analyse the treatment effects on AMF root colonization, soil in-
organic N and soil available P because these were only estimated 
once in Aug 2017. An independent samples t-test was used to de-
tect significant differences between the control and Topsin-M treat-
ments for each PFG removal level. The homogeneity and normality 
of variances were verified for all data using Levene and Kolmogorov–
Smirnov tests, respectively. All data were analyzed using the SPSS 
statistical package (v 17.0; IBM, Armonk, New York, USA) with a sig-
nificance level of p < 0.05.

3  | RESULTS

3.1 | Effects of treatments on plant shoot biomass 
and diversity

There was a significant interaction effect between fungicide and 
PFG removal on the shoot biomass of the community over time 
(F × Removal: F2,25 = 4.73, p < 0.05; Table 1). The fungicide treat-
ment significantly increased the community shoot biomass in the 
combined C4 grasses and forbs removal plots but had less effect 

TABLE  1 F ratios resulting from the repeated measures ANOVA testing the effects of year (Y) and treatments on the plant shoot biomass 
from 2015 to 2017

Effects

Community biomass C3 grass biomass C4 grass biomass Forb biomass

df F p df F p F p F p

Between-subject

Block 5, 25 1.56 0.21 5,15 1.36 0.29 0.53 0.75 2.01 0.14

F 1, 25 3.69 0.07 1,15 10.23 0.01 6.85 0.02 0.03 0.86

Removal 2, 25 17.49 <0.01 1,15 118.58 <0.01 0.14 0.71 0.06 0.81

F × Removal 2, 25 4.73 0.02 1,15 5.66 0.03 0.12 0.73 0.16 0.70

Within-subject

Y 2, 50 182.95 <0.01 2,30 141.41 <0.01 1.23 0.31 41.43 <0.01

Y × Block 10, 50 2.70 0.01 10,30 2.15 0.05 1.87 0.09 1.29 0.28

Y × F 2, 50 1.24 0.30 2,30 2.77 0.08 2.91 0.07 0.74 0.48

Y × Removal 4, 50 24.99 <0.01 2,30 169.58 <0.01 0.61 0.55 2.24 0.12

Y × F × Removal 4, 50 0.81 0.52 2,30 2.08 0.14 0.80 0.46 0.13 0.88

Treatments were fungicide (F), plant functional group removal (Removal). C3 grasses, C4 grasses and forbs all have the same df. Bold values are signifi-
cant at p < 0.05.
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in the control and C3 grasses removal plots (Figure 1a–c). Across 
3 years of treatment, PFG removal significantly reduced plant spe-
cies richness and the Shannon–Wiener index, particularly when both 
C4 grasses and forbs were removed (Figure 2). The fungicide treat-
ment only reduced the Shannon–Wiener index across all removal 
treatments in 2017 (Figure 2).

There was also a significant interaction between fungicide and 
PFG removal in their effects on the shoot biomass of C3 grasses 
across the 3 years (F × Removal: F1,25 = 5.66, p < 0.05; Table 1). The 
fungicide treatment significantly increased the shoot biomass of C3 
grasses only in the combined C4 grass and forb removal plots from 
2015 to 2017 (Figure 3a–c) and significantly reduced the shoot bio-
mass of C4 grasses only in 2017 (Figure 3d–f). Neither fungicide or 
PFG removal significantly affected the shoot biomass of forbs (all 
p > 0.05; Figure 3g–i).

3.2 | Effects of treatments on plant shoot P content

There was a significant interaction effect between fungicide and 
PFG removal on the shoot P content of the plant community over 
time (F × Removal: F2,25 = 7.46, p < 0.01; Supporting information: 
Appendix S1: Table S2). The fungicide treatment increased the 
shoot P content of the plant community in both the control and the 
combined C4 grasses and forbs removal plots but reduced it in the 
C3 grasses removal plots from 2015 to 2017 (Figure 4; Supporting 
information: Appendix S1: Table S2). PFG removal significantly in-
creased the shoot P content of C3 grasses and this was not affected 
by AMF across 3 years (Supporting information: Appendix S1: Table 
S2, Figure 5a–c), whereas the fungicide treatment significantly re-
duced the shoot P content of C4 grasses and forbs, which was not 
affected by PFG removal (Figure 5d–i; Supporting information: 
Appendix S1: Table S2).

3.3 | Effects of treatments on compensation index

The CIs were much higher for C3 grasses (close to 1 in 2016 and 
2017; Figure 6a) than for C4 grasses and forbs (much less than 0; 

Figure 6b,c). The fungicide treatment significantly increased the 
CIs of C3 grasses but did not affect those of C4 grasses and forbs 
(independent-samples t-test; Figure 6a–c).

3.4 | Effects of treatments on AMF and 
soil properties

There was a significant interaction between fungicide and PFG re-
moval in their effects on mycorrhizal root colonization (F × Removal: 
F2,25 = 12.45, p < 0.01), with the addition of fungicide decreasing 
mycorrhizal root colonization by 26.92% in the no removal plots 
and by 63.04% in the C3 grasses removal plots, but having no ef-
fect on mycorrhizal root colonization in the combined C4 grasses and 
forbs removal plots (Figure 7). Fungicide addition significantly sup-
pressed the AMF PLFA concentration across all removal treatments 
(F1,25 = 4.93, p < 0.05; Supporting information: Appendix S2: Figure 
S2) but did not alter the bacterial and other fungal PLFA concen-
trations in 2016 (all p > 0.05; Supporting information: Appendix S1: 
Table S3). Neither fungicide addition nor PFG removal affected soil 
inorganic N and available P contents (all p > 0.05; Supporting infor-
mation: Appendix S2: Figure S3).

4  | DISCUSSION

Above-ground productivity was significantly decreased when 
both C4 grasses and forbs were removed from plots, but it was 
not affected by the loss of C3 grasses (Figure 1, Table 1). It is sug-
gested that the PFG loss could erode above-ground productivity 
in a temperate steppe community (Figure 1, Table 1), consistent 
with the conclusions of other removal experiments (Flombaum & 
Sala, 2008; Pan et al., 2016; Wardle & Zackrisson, 2005). Changes 
in above-ground productivity were derived from not only the 
identity of the PFGs but also the presence of AMF. Our results 
showed that AMF strongly suppressed C3 grass growth when both 
C4 grasses and forbs were removed from the plots (Figure 3a–c, 
Table 1), it might be reasoned from AMF suppressing the shoot 

F IGURE  1 Effects of fungicide (F) and functional group removal (Removal) on the shoot biomass of the plant community in 2015 (a), 2016 
(b) and 2017(c). 0, 1 and 2 indicate no removal, removal of C3 grasses and removal of both C4 grasses and forbs, respectively. Data are means 
± SE. *P < 0.05; **P < 0.01; NS P > 0.05
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P content of C3 grasses (Figure 5a–c; Supporting information: 
Appendix S1: Table S2). Similar to our study, previous studies 
also found that the application of a fungicide increased graminoid 
shoot biomass (McLaren & Turkington, 2010, 2011). However, 
below-ground productivity of the plant community was much 
higher than above-ground productivity in a temperate steppe 
(Yang, Fang, Ma, Guo, & Mohammat, 2010). Unfortunately, we 
only measured the above-ground productivity, not below-ground 
one, thus total plant productivity was not assessed and might pro-
vide a future study.

The removal of both C4 grasses and forbs dramatically reduced 
plant species richness and diversity, whereas the removal of C3 
grasses had little effect (Figure 2). This suggests that forbs are the 
main contributor to plant richness and diversity in this grassland eco-
system (Figure 2). The addition of fungicide also had no effect on 
plant richness over time regardless of the PFG removal (Figure 2a–c), 
which is consistent with findings in a similar grassland ecosystem 
(Yang et al., 2014).

Wardle et al. (1999) predicted that compensation for biomass 
loss depended on the traits of the remaining plants, not of those 
removed. However, the degree of biomass compensation de-
pended on both the identity of the remaining PFGs and the pres-
ence of AMF in this study. After 3 years of recovery, C3 grasses 
could completely compensate for the biomass loss of both C4 
grasses and forbs but AMF decreased this biomass compensation 
ability (Figure 6). The present results might be reasoned from the 
C3 grasses at our study site, containing perennial rhizomatous 
grasses (Carex korshinskyi) and perennial bunch grasses (Stipa 

krylovii), which have been shown to have a strong compensation 
ability (Supporting information: Appendix S2: Figure S4) due to 
their highly developed rhizome system (Wang, Li, Han, & Ming, 
2004), allowing them to quickly occupy the space created by spe-
cies losses (Symstad & Tilman, 2001). Alternatively, the C3 grasses 
usually have fibrous and highly branched root systems with rapid 
nutrient uptake rates as a result of the high root surface area 
(Wilson & Hartnett, 1998). Therefore, C3 grasses are less depen-
dent on AMF, and often show few positive and sometimes even 
negative responses to AMF inoculation (Lin et al., 2015; Wilson & 
Hartnett, 1998).

In the C3 grass removal plots, neither C4 grasses nor forbs 
compensated for the biomass loss of C3 grasses (Figure 6), and 
AMF slightly improved the biomass of C4 grasses (Figure 3f) 
and their shoot P content (Figure 5; Supporting information: 
Appendix S1: Table S2). Similarly, previous studies have also 
found that C4 grasses and forbs do not usually compensate for 
the PFG loss (McLaren & Turkington, 2011; Pan et al., 2016; 
Symstad & Tilman, 2001). C4 grasses have strong recruitment lim-
itation and do not quickly occupy the space caused by PFG losses 
(Symstad & Tilman, 2001). The responses of forbs to PFG loss 
are very variable, ranging from small, annual, early season, low 
mycorrhizal responsive plants such as Salsola collina to robust, 
perennial, deep-rooted, late season, high mycorrhizal respon-
sive species such as Artemisia frigida (Symstad & Tilman, 2001; 
Tian et al., 2009; Yang et al., 2014). In this study, we evaluated 
the CI fairly soon after the initiation of PFG removal, whereas 
compensatory growth of the remaining PFGs (and particularly C4 

F IGURE  2 Effects of fungicide (F) and functional group removal (Removal) on the species richness (a, b and c) and Shannon-Wiener index 
(d, e and f) from 2015 to 2017. See Figure 1 for treatment abbreviations. Data are means ± SE. *P < 0.05; **P < 0.01; NS P > 0.05
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F IGURE  3 Effects of fungicide (F) and functional group removal (Removal) on the shoot biomass of C3 grasses (a, b and c), C4 grasses (d, 
e and f) and forbs (g, h and i) from 2015 to 2017. See Figure 1 for treatment abbreviations. Data are means ± SE. *P < 0.05; **P < 0.01; NS 
P > 0.05

F IGURE  4 Effects of fungicide (F) and functional group removal (Removal) on the shoot P content of the plant community in 2015 (a), 
2016 (b) and 2017 (c). See Figure 1 for treatment abbreviations. Data are means ± SE. *P < 0.05; **P < 0.01; NS P > 0.05
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F IGURE  5 Effects of fungicide (F) and functional group removal (Removal) on the shoot P content of C3 grasses (a, b and c), C4 grasses (d, e 
and f) and forbs (g, h and i) from 2015 to 2017. See Figure 1 for treatment abbreviations. Data are means ± SE. *p < 0.05; **p < 0.01; NS p > 0.05

F IGURE  6 Effects of fungicide (F) and 
functional group removal (Removal) on 
compensation index in 2015 (a), 2016 (b) 
and 2017(c). See Figure 1 for treatment 
abbreviations. Data are means ± SE. 
*p < 0.05; **p < 0.01; NS p > 0.05
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grasses and perennial forbs) may last for several years (Pan et al., 
2016), such forbs compensated completely for the biomass loss 
of graminoids after 5 years of recovery (McLaren & Turkington, 
2011).

The identity of the removed PFGs also affects mycorrhizal root 
colonization at the community level, which only increased in the 
C3 grass removal plots (Figure 6). Our results were similar to the 
findings of Urcelay et al. (2009), where graminoid loss tended to 
increase mycorrhizal root colonization. Most C3 grasses, particu-
larly C. korshinskyi and Stipa krylovii, exhibit a low percentage of 
mycorrhizal colonization (Bao & Yan, 2004). Therefore, the higher 
proportion of both C4 grasses and forbs that were present in the C3 
grass removal plots might explain the higher mycorrhizal root colo-
nization observed in this study (Supporting information: Appendix 
S2: Figure S5).

The addition of Topsin-M over three growing periods led to a 
significant decrease in the mycorrhizal root colonization and PLFA 
concentration of AMF in the control plots, which is consistent with 
the findings with Topsin-M applied to native grasslands (McCain 
et al., 2011; Wilson & Williamson, 2008). The shoot P content of the 
plant community was lower in the Topsin-M addition plots than the 
control, which illustrates that Topsin-M can effectively suppress the 
functions of AMF in the host plant. Several studies have previously 
shown that fungicide addition may alter plant growth by increasing 
soil nutrient availability (Allison, Rajaniemi, Goldberg, & Zak, 2007; 
Chen & Edwards, 2001). However, in the present study, Topsin-M 
addition did not measurably alter the soil inorganic N and available 
P content, consistent with previous work in the field (Yang et al., 
2014). Furthermore, Topsin-M addition did not totally suppress my-
corrhizal root colonization in this study, suggesting that the in situ 
effects of AMF on the growth and compensation ability of plants 
might have been underestimated (Kahiluoto, Ketoja, & Vestberg, 
2000; Yang et al., 2014).

5  | CONCLUSIONS

The AMF could decrease above-ground productivity responses 
to PFG loss, and furthermore affect the degree of compensation 
in the remaining PFGs, which decrease biomass compensation 
ability of C3 grasses to buffer the impacts of biomass loss of both 
C4 grasses and forbs in a natural ecosystem (Adler & Bradford, 
2002; McLaren & Turkington, 2011; Pan et al., 2016). Thus, our 
results demonstrate that AMF affect plant growth responses at 
the PFG and community level, and could increase our ability to 
ameliorate the responses of plant communities to future plant 
diversity loss.
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