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• It remains unclear how N deposition
affects plant growth in N-rich tropical
forest.

• To evaluate impacts ofN inputs onunder-
story plants, foliar traits were measured.

• Excess N accumulates as soluble protein
or free amino acid, but not as chlorophyll.

• Nitrogen inputs induced nutrient imbal-
ance and lower photosynthetic capacity.

• PNUE (Photosynthetic nitrogen use effi-
ciency) is a sensitive indicator to N status.
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Anthropogenic increase of nitrogen (N) deposition has threatened forest ecosystemhealth at both regional and global
scales. In N-limited ecosystems, atmospheric N input is regarded as an important nutrient source for plant growth.
However, it remains an open question on howelevatedNdeposition affects plant growth inN-rich forest ecosystems.
To address this question,weused a simulatedNdeposition experiment in anN-richmature tropical forest of southern
China,withNaddition levels as 0 kgNha−1 yr−1 (Control), 50 kgNha−1 yr−1 (Low-N), 100kgNha−1 yr−1 (Middle-
N) and 150 kg N ha−1 yr−1 (High-N), respectively. We measured foliar nutrient element status (e.g., N, P, K, Ca and
Mg), N metabolism and photosynthesis capacity of three dominant understory plant species (Cryptocarya concinna
and Cryptocarya chinensis asmedium-light species; and Randia canthioides as shade tolerant species) in this forest. Re-
sults showed that two years of N addition greatly increased foliar N content, but decreased the content of nutrient cat-
ions (e.g., K, Ca andMg). Nitrogen addition also increased N accumulation as organic forms as soluble protein and/or
free amino acid (FAA), but not as chlorophyll in all three species. We further found that the photosynthesis capacity
(Pmax) of C. concinna and C. chinensis decreased significantly with elevated N addition, with no effects on R.
canthioides. However, photosynthetic nitrogen use efficiency (PNUE) significantly declined with N addition for all
three species, with significantly negative relationships between PNUE/Pmax and foliar N content. These findings sug-
gest that excess N inputs can accelerate nutrient imbalance, and inhibit photosynthetic capacity of understory plant
species, indicating continuous high N deposition can threat understory plant growth in N-rich tropical forests in the
future.Meanwhile, PNUE can beused as a sensitive indicator to assess ecosystemNstatus under chronicNdeposition.

© 2017 Elsevier B.V. All rights reserved.
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1. Introduction

Human activities have altered the global and regional cycles of nitro-
gen (N) more than for any other elements (Galloway et al., 2008;
Erisman et al., 2013). Accelerating industrialization and excess use of
N fertilizer nowmake N deposition significant not only in densely pop-
ulated and highly developed regions (e.g., Europe and North America),
but also in other parts of the world (e.g., Asia and Latin America)
(Galloway et al., 2003; Adams et al., 2004). Of all N fertilizers, 40%–
60% has been used in the tropics and subtropics (Galloway et al.,
2003). At the same time, fossil fuel usage is expected to increase by sev-
eral hundred percent in many areas of the tropics and subtropics over
the coming decades (Galloway et al., 2008).

Enhanced atmospheric N deposition dramatically alters forest eco-
system properties and processes (such as net primary production and
nutrient cycling), especially when inputs are large and continuous
(Aber et al., 1989; Högberg et al., 2006; Liu et al., 2011), and has threat-
ened the health of ecosystems in North America and Europe (Matson
et al., 2002; Aber et al., 2003; Magill et al., 2004; Högberg et al., 2006;
Bobbink et al., 2010; Binkley and Hogberg, 2016). Understory plants,
as an important component of forest ecosystems, were undoubtedly af-
fected by enhanced atmospheric N deposition. Many studies on the ef-
fects of N deposition on forest plants have been reported (Van Dijk
and Roelofs, 1988; Aber et al., 1995; Pitcairn et al., 1998; Bauer et al.,
2000, 2004; Nakaji et al., 2002; Magill et al., 2004; McGrath et al.,
2005; Elvir et al., 2006; Lu et al., 2010; Phoenix et al., 2012). In these
studies, there have been increasing concerns regarding changes in foliar
nutrient status, N metabolism and photosynthetic capacity.

In N-limited forests, N deposition can satisfy plant demand for N and
improve nutrient conditions, whichwill increase photosynthetic capac-
ity and simulate plant growth. However, excess N inputs in forest eco-
systems may result in nutrient imbalance in trees (Boxman and
Roelofs, 1988; Whytemare et al., 1997; Magill et al., 2000; Nakaji et al.,
2001) and reduce net photosynthesis (Bauer et al., 2004; Elvir et al.,
2006). One of the most consistent responses of forests to high N inputs
is higher foliar N concentrations, suggesting that N accumulates in
plants when excess atmospheric N is absorbed (Van Dijk and Roelofs,
1988; Ericsson et al., 1993; Näsholm et al., 1994; Magill et al., 2000;
Talhelm et al., 2011). Tomitigate inorganic N toxicity, plants always reg-
ulate the N metabolism level by allocating substantially N to protein,
chlorophyll, and/or amino acids (Näsholm et al., 1994; Richter et al.,
1995; Bauer et al., 2004; Bubier et al., 2011). Until now, most studies
on the effects of enhanced N deposition on foliar nutrient status, N me-
tabolism and photosynthesis of forest trees have been conducted in N-
limited temperate/boreal forests (Van Dijk and Roelofs, 1988; Richter
et al., 1995; Nakaji et al., 2001; Bauer et al., 2004; Elvir et al., 2006;
Talhelm et al., 2011; Bubier et al., 2011). However, it remains unclear
how forest trees respond to excess N deposition in tropical and subtrop-
ical areas, where forest ecosystems are often N rich, but more phospho-
rus (P) deficient (Vitousek and Sanford, 1986; Matson et al., 1999; Lu
et al., 2010; Cleveland et al., 2011; Santiago et al., 2012).

In Asia, from 1961 to 2000, the reactive N from anthropogenic sources
increased from 14.4 Tg N yr−1 to 67.7 Tg N yr−1, and is predicted to be
105.3 Tg by the year of 2030 (Zheng et al., 2002). Currently, this leads to
high atmospheric N deposition (30–73 kg N ha−1 yr−1) in some forests
of southern China (Ren et al., 2000; Zhou and Yan, 2001; Xie et al., 2010;
Huang et al., 2012). For example, the amount of N deposition from rainfall
to the tropical forests of Dinghushan Biosphere Reserve was
34.4 kg N ha−1 yr−1 in 2009–2010 (Lu et al., 2013). This value is compa-
rable to the highest levels of N deposition occurring in Europe and USA
(MacDonald et al., 2002; Aber et al., 2003), causing N saturation of forest
ecosystems. There have been increasing concerns about the effects of en-
hanced N deposition on forest ecosystems in southern China (Mo et al.,
2006; Fang et al., 2008; Liu et al., 2011; Lu et al., 2010, 2015).

Changes in vegetation can be observed before ecosystem processes
are greatly affected by N deposition (Bobbink et al., 2010; Phoenix
et al., 2012), and are considered to be the first signs of N saturation
(Gundersen, 1991). The understory vegetation is predicted to play an
important role in forest ecosystems (Kondo et al., 2005; Gilliam,
2007), and can be used as an indicator of excess N. We have previously
reported that the mature forest in the Dinghushan Nature Reserve of
southern China has been N saturated due to both long-term high N de-
position in the region and the age of the ecosystem (Mo et al., 2006;
Fang et al., 2008). In present study, we selected three representative un-
derstory plants in this mature forest: one shade tolerant species Randia
canthioides, and two medium-light species Cryptocarya concinna and
Cryptocarya chinensis. To evaluate the impacts of N deposition on plant
growth, the main leaf parameters were measured: nutrient status, N
metabolism, and photosynthetic capacity. We aim to test the following
hypothesis: short-term N additions will not affect foliar nutrient status,
N metabolism, and photosynthetic capacity of these three understory
plant species, considering that this mature forest has been N saturated,
and additional N inputs have minor effects on plant growth.

2. Material and methods

2.1. Study site

This study was conducted at Dinghushan Biosphere Reserve, an
UNESCO/MAB site. The reserve is located in the central area of Guang-
dong Province in southern China (112°10′ E and 23°10′N) and occupies
an area of approximately 1200 ha. About 20% of the reserve area is cov-
ered by undisturbed monsoon evergreen broadleaf forest (mature for-
est), that represents the climax forest type of lower subtropics in
China (Wang et al., 1982;Mo et al., 2003).We have established research
site in the mature forest, at 250–300m above sea level, which has been
protected from human impacts for N400 years.

The reserve experiences a typical monsoon climate. The average an-
nual rainfall is 1927 mm, having a distinct seasonal pattern with 75% of
it falling from March to August, and 6% from December to February
(Huang and Fan, 1982). Annual average relative humidity is 80%, and
the mean annual temperature is 21.0 °C. The reserve has been
experiencing high atmospheric N deposition in precipitation (N-
30 kg N ha−1 yr−1) since 1990s (Zhou and Yan, 2001; Lu et al., 2013).
In 2009–2010, the total dry N deposition was 14.21 kg N ha−1 yr−1

(Long, 2010).
A survey conducted in June 2003 (before the start of N addition ex-

periment) showed that the major species in the mature forest were
Castanopsis chinensis, Machilus chinensis, Schima superba, Cryptocarya
chinensis, Syzygium rehderianum in the canopy and sub-canopy layers,
which represented up to 80% of total basal area. The plants in the under-
story layers were mainly consisted of woody plant with diameters at
breast high (DBH) often below 2.5 cm. The dominant understory trees
were C. concinna, C. chinensis, R. canthioides, and Blastus cochinchinensis.
The soil in the study site is lateritic red earth formed from sandstone
(oxisols) with a soil depth deeper than 60 cm (Mo et al., 2003). Mineral
soil properties of mature forest are shown in Table 1.

2.2. Experimental design and sample collection

A nitrogen addition experiment was initiated in 2003 (Mo et al.,
2006) including four N addition treatments (in three replicates):
0 kg N ha−1 yr−1 (Control), 50 kg N ha−1 yr−1 (Low-N),
100 kg N ha−1 yr−1 (Middle-N) and 150 kg N ha−1 yr−1 (High-N).
The N addition gradient was based on both present N deposition level
and its further increase in the future. Totally, twelve 20 × 10 m plots
were established in a completely randomized design. Each plot was
surrounded by at least a 10 m wide buffer strip to the next plot. For
the N addition, NH4NO3 salt was weighed, dissolved with 20 L of
water, and applied monthly on the floor of each plot (usually below
the canopy of the studied understory trees) by using a backpack sprayer
from July 2003. The Control plots only received the same amount of



Table 1
Mineral soil properties in the Control plots of a mature forest of Dinghushan in subtropical China.

Depth pH (H2O) Total C (%) Total N (%) C/N Available P
(mg kg−1)

Soil bulk density
(g cm−3)

0–10 cm 3.76(0.01) 3.2 (0.3) 0.3 (0.02) 12.8 (2.3) 5.0 (0.2) 0.98(0.06)
10–20 cm 3.86(0.01) 2.1 (0.4) 0.1 (0.01) 16.4 (1.5) 2.6 (0.1) 1.15(0.08)

*Data are cited from Mo et al., 2006; Values are the mean ± S.E. (n = 3 for all samples; measured in July 2004).
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water. The study objects were three dominant understory plant species
(R. canthioides, C. concinna, and C. chinensis) chosen to have similar eco-
physiological characteristics and environmental conditions. Their struc-
tural characteristics are shown in Table 2. One-year-old mature leaves,
lacking visible signs of senescence, were selected for the measurement.

2.3. Photosynthesis measurements

In June 2005, light-saturated net photosynthesis rate (Pmax) was
measured on fully developed leaves at the top of each plant using a Li-
6400 CO2/H2O portable photosynthesis system with integrated LED
light source (Li-Cor, Lincoln, NE, USA). The chamber CO2 concentration
wasmaintained at ambient level (about 370 μmolmol−1), and leaf tem-
peraturewas kept at ~25 °C. To obtain light-saturated rates of photosyn-
thesis, the leaf in the chamber was illuminated at 1000 μmol m−2 s−1

photosynthetic photon flux density (PPFD), under adjusted internal
conditions at vapour pressure deficits between 0.5 and 1.2 k Pa, and air-
flow rate at 500 μmol s−1. Preliminary experiments showed that the
PPFD level chosen was sufficient to light saturate photosynthesis. All
photosynthesis measurements were conducted on 6–8 individual
leaves per tree, and 2 trees of each species were selected in the same
measuring date to create an averaged value for each plot level.

After photosynthesis measurements, leaf sampling was carried out.
Leaves were put into a sealed plastic bag with silica gel, placed in an
ice box, and then transported to the laboratory and stored at 4 °C until
further analysis. Leaf mass per area (LMA) was determined as the
ratio of leaf dry weight over the leaf fresh area by cutting disks (n
N 30) of known area with the aid of stainless steel templates.

2.4. Foliar nutrient status

A fraction of the collected leaves were used for element analysis.
Dried leaves (70 °C for N48 h) were ground to a fine powder with a vi-
brating sample mill. The total N concentration was determined with
Kjeldahl digestion method (Ryan et al., 2007), while total P concentra-
tion was analyzed colorimetrically based on the Molybdate-blue reac-
tion. To measure the leaf contents of K, Ca, Na, Mg, and Al, the powder
was digested with sulphuric and perchloric acid (Dong et al., 1996).
The element concentrations were determined by ICP optical emission
spectrometer (Perkin Elmer, USA).

2.5. Free amino acid determination

Amino acid extraction followed the procedure of Barnett (1966) and
Sun et al. (2000). A number of fresh leaves were homogenized in liquid
N using a mortar and pestle. Five ml of 5% salicylic acid were added to
Table 2
Structural characteristics of three dominant understory species in the mature forest. Sur-
vey areas were 2400 m2 for the research site.

Species Mean
height (m)

Mean stem base
diameter (cm)

Tree density
(tree ha−1)

Mean age
(years)

R. canthioides 1.32 1.05 2761 8
C. concinna 1.08 1.07 3422 7
C. chinensis 1.36 1.43 893 8
the homogenized sample (Approximately 100 mg). After 15 min of ex-
traction, the sampleswere centrifuged at 15000 rmin−1 for 30min, and
the supernatant collected. The remaining pellets were re-extracted one
more time and the supernatants combined. The FAA content was quan-
tified based on an external standard, and measured with amino acid
auto-analyzer (HITACHI 835-50).
2.6. Leaf soluble proteins and pigment quantification

The total soluble proteins were extracted adopting the method de-
scribed by Xu and Zhou (2006). About 1 g of leaves was homogenized
with 10 ml of 50 mM sodium phosphate, pH 7.8, containing 2 mM
EDTA and 80mML-ascorbic acid. After the homogenatewas centrifuged
at 15,000g for 20min, the supernatants were used to determine soluble
protein. The protein concentration was determined according to
Bradford (1976). Calibration curves were made with bovine serum
albumine (BSA) as the standard. The photosynthetic pigments (chloro-
phyll/Chl, Chl a, Chl b) in leaves were extracted in 80% acetone and cen-
trifuged twice at 5000g for 15 min. The concentrations of chlorophylls
and carotenoids were determined spectrophotometrically and calculat-
ed per unit fresh mass basis according to the equations of Lichtenthaler
(1987). Subsamples of leaves were dried to 105 °C to determine the
fresh-weight to dry-weight ratio, and all results are reported on 105
°C basis.
2.7. Statistics

One-way analysis of variance (ANOVA)with LSD testwas performed
to test the effects of N treatment on nutrient status, Nmetabolism, pho-
tosynthetic capacity of the three understory species. Significant differ-
ences between treatments and among species were determined by
using multiple comparisons of means. Linear regression analyses were
performed to establish the strength and significance of relationships be-
tween two different variables for PNUE and foliar N permass (Nmass, or
foliar N content), and Pmax and Nmass, respectively. Spearman's rho
correlation coefficients were calculated to show the relationship be-
tweenN treatments, leafmass per unit leaf area (LMA), Nmass, foliar ni-
trogen per unit leaf area (Narea), Pmax and PNUE. All analyses were
conducted using SPSS software package (SPSS 16.0 for windows, SPSS
Inc., Chicago, IL, USA) Statistical significant differences were recognized
at p b 0.05 unless otherwise stated.
3. Results

3.1. Foliar element chemistry

In the Control plots, R. canthioides had significantly higher foliar K,
Ca, and Mg concentrations, and Ca/Al ratios than the other two species,
and C. concinna had higher foliar N concentrations (Table 3). Generally,
elevated N additions greatly increased foliar N concentrations, but de-
creased foliar base cations (K, Ca and Mg) in all three species. Nitrogen
addition significantly increased foliar Al concentration in C. concinna,
and decreased the ratios of Ca/Al in C. concinna and C. chinensis. There
were no responses of foliar P and Na to N addition in any species.
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3.2. Photosynthetic parameters

In the Control plots, there were no significant differences in Pmax
among the three species (Fig. 1a). R. canthioides had significantly higher
PNUE than C. concinna and C. chinensis (Fig. 1d). However, both LMA
and Narea in R. canthioides were significantly (p b 0.001) lower than
those in C. concinna and in C. chinensis (Fig. 1b and c).

In the N treatment plots, the photosynthesis capacity significantly
decreased with elevated N addition in C. concinna and C. chinensis, but
R. canthioides did not respond (Fig. 1a). Nitrogen addition greatly in-
creased foliar N content per area (Fig. 1b), and decreased PNUE in all
three species (Fig. 1d). There were no N treatment effects on LMA for
any species (Fig. 1c). Moreover, there were significantly negative rela-
tionships between PNUE/Pmax and foliar N content in three species
across all sampled plants, especially for PNUE (Fig. 2).

3.3. Soluble protein, chlorophyll and free amino acid (FAA)

In the Control plots, C. concinna had the lowest values of soluble pro-
tein and the highest values of FAA compared with R. canthioides and C.
chinensis. There were no significant differences between R. canthioides
and C. chinensis in values of soluble protein and FAA.

In general, N addition significantly increased concentrations of foliar
soluble protein in C. concinna and C. chinensis (Fig. 3a), but only had
marginally significant increase in Middle-N treatment for R. canthioides
(p=0.06). For foliar chlorophyll, therewere generally no response to N
addition for any of the species (Fig. 3b).Total FAA increased greatly in R.
canthioides and C. chinensis under Low-N and/or Middle-N treatments
(Fig. 3c). Nitrogen additions had no effect on FAA in C. concinna.

4. Discussion

4.1. Responses of foliar elements and N metabolites

Contrary to our expectation, our results showed that elevated N ad-
ditions greatly increased foliar N contents in all three studied species
(Fig. 1b) in this alreadyN-rich forest ecosystem, suggesting a potentially
priming effect under short-term (2 years) high N inputs, in spite of eco-
system N status. These results are consistent with results of numerous
studies in temperate forests (Magill et al., 2000; Bauer et al., 2004;
Elvir et al., 2006; Talhelm et al., 2011), where N was usually limited.
However, the present study suggested that short-term N addition
could lead to foliar N accumulation in N-rich tropical forests. This result
was further supported by a latter 15N isotope study, which found plants
in the same N saturated tropical forest could use the “new” added N
(Gurmesa et al., 2016). In present study, consistent increases of foliar
N in three species demonstrate that plants in N-rich ecosystem still
have capacity to retain the external N inputs of inorganic N in a short
term. However, it merits a further study to track the effects of long-
Table 3
Foliar element concentrations (mg g−1 dry weight) and ratios of N/P and Ca/Al of Randia canth
forest in southern China. Values shown are themean± S.E. (n=3). The different lowercase let
treatments within a single species, respectively.

N P K Ca

R. canthioides Control 20.1 (0.5)A 0.86 (0.09) 18.6 (0.5)a 14.6 (0.4)a
Low N 21.8 (0.7)AB 0.81 (0.03) 16.5 (0.8)ab 12.5 (0.9)b
Middle-N 23.0 (1.9)AB 0.81 (0.02) 15.4 (1.3)b 11.7 (0.2)b
High-N 24.6 (2.4)B 0.75 (0.00) 14.7 (0.5)b 11.7 (0.3)b

C. concinna Control 22.2 (0.6)a 0.96 (0.03)a 7.7 (0.4)a 6.3 (0.3)a
Low-N 23.7 (0.8)ab 1.01 (0.02)ab 7.5 (0.4)ab 5.8 (0.2)ab
Middle-N 26.1 (0.4)b 1.01 (0.05)ab 6.4 (0.3)bc 4.9 (0.4)b
High-N 26.7 (0.9)b 1.06 (0.03)b 6.1 (0.3)c 4.7 (0.3)b

C. chinensis Control 19.1 (1.1)a 0.86 (0.14) 5.3 (0.5)a 4.6 (0.1)a
Low-N 21.6 (0.3)ab 0.83 (0.05) 4.8 (0.7)ab 4.0 (0.1)b
Middle-N 23.4 (1.5)b 0.93 (0.08) 4.9 (0.4)ab 4.3 (0.1)ab
High-N 24.3 (0.0)b 1.00 (0.18) 3.7 (0.3)b 3.5 (0.3)b
termN addition on foliar N contents in the future, before a clear conclu-
sion can be reached.

We further found that elevated N additions decreased foliar base el-
ement (K, Ca and Mg) of all three species (Table 3), suggesting that nu-
trient imbalance may arise. In fact, a number of reports on higher foliar
N and lower Ca and Mg occurred in the situation with more access to N
resource (Whytemare et al., 1997; Elvir et al., 2006; Wortman et al.,
2012). The decreases in foliar K, Ca and Mg could be the result of either
exchange with NH4

+ from the leaves or depletion in soil. Considering
that N application affects mainly on the ground layer, foliar loss through
exchanges seems not to be the main reason for the decrease of foliar K,
Ca, and Mg. Thus, it could result from N induced soil acidification and
subsequent leaching loss of the base cations. Indeed, another study in
our forest had confirmed that soil base cations were exhausted. After
26 month N application, for example, this forest exhibited significant
negative symptoms such as soil acidification, Al mobilization and
leaching of base cations from the soil (Lu et al., 2009), and the situation
became even worse in the long-term (Lu et al., 2014). Soil acidification
resulted from nitrification of NH4

+ and subsequent NO3
− leaching may

trigger base cations leaching, exacerbating cations depletion. In addi-
tion, decreased root uptake of K, Ca and Mgmay arise from ion compe-
tition with NH4

+ (Schulze, 1989). Declines in the contents of K, Ca and
Mg resulted fromN and/or acid deposition have been frequently report-
ed in temperate ecosystem (Elvir et al., 2006). However, Ca and Mg de-
pletion in plants induced by increasing N deposition are rarely
addressed in tropical forests, where forests may be particularly suscep-
tible to nutrient imbalance (Matson et al., 1999; Lu et al., 2014). Our
findings suggest that the N-induced soil base cation depletion could af-
fect nutrient supply to plants, which provides a new insight into nutri-
ent imbalance in tropical forests.

Similar to the change of foliar N content, foliar N allocated to protein
or free amino acids increased correspondingly with N addition (Fig. 3),
but chlorophyll content showed no response. Plants are known to re-
spond to various forms of abiotic and biotic environmental stress
though alteration in the N metabolite levels. Increases in foliar N con-
centration in trees resulting fromhighNdeposition are typically accom-
panied by increases in individual amino acids, total free amino acids,
and/or protein in temperate forests (Bauer et al., 2000; Ericsson et al.,
1993; Van Dijk and Roelofs, 1988; Bubier et al., 2011). So far, less is
known about the N metabolism in tropical forests. Our results were in
line with findings in temperate forests. Moreover, the consistent in-
crease of foliarN compounds suggests that the increased foliarNpartial-
ly accumulate as soluble protein or FAA rather than in chlorophyll in
these understory species in this mature tropical forest.

4.2. Responses of foliar photosynthetic capacity

In contrast to our hypothesis, the photosynthesis capacity decreased
under high N addition in the medium-light species (C. concinna and C.
ioides, Cryptocarya concinna and Cryptocarya chinensis understory tree in a mature tropical
ters and capital letters indicate significant differences at p b 0.05 and p b 0.1 level among N

Na Mg Al N/P Ca/Al

0.22 (0.04) 7.98 (0.04)a 0.36 (0.02) 23.90 (1.88)a 44.50 (4.65)
0.20 (0.04) 6.66 (0.26)b 0.33 (0.04) 27.32 (1.81)ab 41.61 (7.94)
0.18 (0.03) 6.00 (0.53)b 0.38 (0.03) 29.74 (1.96)ab 32.28 (3.31)
0.19 (0.04) 5.89 (0.27)b 0.39 (0.03) 32.98 (3.37)b 31.71 (1.43)
0.72 (0.13) 1.87 (0.03)a 0.25 (0.05)a 23.12 (0.82) 28.03 (6.23)a
0.61 (0.10) 1.72 (0.05)a 0.28 (0.05)a 23.40 (0.67) 22.36 (4.65)ab
0.64 (0.04) 1.45 (0.02)b 0.31 (0.02)ab 25.98 (1.46) 16.77 (0.90)ab
0.74 (0.11) 1.41 (0.13)b 0.40 (0.03)b 25.18 (1.35) 12.93 (2.12)b
0.24 (0.02) 1.09 (0.06)a 0.24 (0.05) 23.01 (2.36) 22.87 (4.95)a
0.22 (0.06) 1.13 (0.07)ab 0.25 (0.06) 26.36 (2.02) 18.25 (4.89)ab
0.21 (0.05) 0.95 (0.07)ab 0.24 (0.04) 25.36 (0.70) 21.38 (3.52)ab
0.19 (0.03) 0.88 (0.03)b 0.32 (0.01) 26.06 (5.07) 11.58 (1.34)b



Fig. 1.Effects of N treatments on foliar photosynthetic rate at light saturation (Pmax, a), foliar nitrogen per unit leaf area (Narea, b), leafmass per unit leaf area (LMA, c), and photosynthetic
nitrogen-use efficiency (PNUE, d) for Randia canthioides, Cryptocarya concinna and Cryptocarya chinensis in a mature tropical forest. Notes: Values shown are themean± S.E. (n=3); The
asterisks (*) indicate significant differences at p b 0.05 level between the Control and the N-treatment plots within a single species.
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chinensis), but did not change in the shade tolerant species (R.
canthioides). These results also contrasted to the findings in N-limited
temperate forests (Brown et al., 1996; Clement et al., 2000; Nakaji
et al., 2002), where the photosynthetic capacity generally increased
with low level of N addition. However, these results were comparable
to those results from former nursery experiments (Li et al., 2004; Mo
et al., 2008), which suggested that low levels of N promoted Pmax and
growth of Schima superba and C. concinna (dominant tree species in
this mature forest), but high levels of N suppress their Pmax and
growth. The reduction in photosynthetic capacity of C. concinna and C.
chinensis may be caused by the following two reasons.
Fig. 2. Relationships between PNUE and Pmax, and foliar N per mass across all plants for Randia
canthioides, ●; C. concinna, □; C. chinensis, ▲). Notes: each point indicates one plant sample, an
First, the overwhelming availability of N over other elements result-
ed in nutrient imbalances. NH4

+ uptake by rootsmay have an antagonis-
tic effect on the uptake of base cations (Schulze, 1989), and the anionic
components of N treatments (NO3

−) likely leached cations from soils
and reduced potentials for Ca2+ and Mg2+ uptake (Reuss and
Johnson, 1986). Also the N-induced soil acidification in our research
site increased the proportion of Al3+ in the soil solution (Lu et al.,
2009), and then increased competition with A13+ could act to limit
Ca2+ and Mg2+ uptake (Reuss and Johnson, 1986). These changes can
eventually dilute other nutrient concentrations in the tree tissues
(Aber et al., 1995; Ericsson et al., 1995). The above processes are
canthioides, Cryptocarya concinna and Cryptocarya chinensis in a mature tropical forest (R.
d there are two samples in each plot and 24 samples per species across all plots.



Fig. 3. Effects ofN treatments on content of soluble protein (a), chlorophyll (a+ b) (b) and
total free amino acid (c) in leaves of R. canthioides, C. concinna and C. chinensis. Notes:
Values shown are the mean ± S.E. (n = 3); The asterisks (*) indicate significant
differences at p b 0.05 level between the Control and the N-treatment plots within a
single species.
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supported by our findings, showing that N addition increased foliar
N concentrations but decreased the concentrations of K, Ca and Mg
(Table 3), resulted in significant increase in ratios of N/base cations
for both species (data not shown). Numerous studies have shown that
photosynthetic capacity is reduced by declines in foliar Ca and Mg (-
Subrahmanyam and Pandley, 1986; Mclaughlin et al., 1990;
Whytemare et al., 1997; Fischer, 1997; Laing et al., 2000; Elvir et al.,
2006).

Reductions in net photosynthesis of C. concinna and C. chinensiswere
also accompanied by increases in foliar Al (Table 3). Further correlation
analysis revealed a positive relationship between the net photosynthet-
ic rate and the ratios of Ca/Al (data not shown). So increasing foliar Al,
decreasingMg, Ca, and Ca/Al ratios may reduce photosynthetic capacity
(Reich et al., 1994; Cronan and Grigal, 1995). In addition, the significant
reduction of foliar Kmay be also responsible for thedecline of photosyn-
thesis capacity, because allocation of N to Rubisco is plastic and modi-
fied by the supply of K (McGrath et al., 2005). Interestingly, we found
no significant changes in N/P ratios in N-treatment plots, which could
be related to slight increase in foliar P. This finding is different from
some others, where imbalance in N/P ratio could reduce net photosyn-
thesis and dry matter production of the seedlings (Nakaji et al., 2001).

Second, high leaf N concentrations could also result in a high fraction
of non-protein or non-photosynthetic protein N. In this study, increased
N as organic N forms only account for a moderate proportion of totally
increased foliar N (Fig. 3 and Table 3). Hence, with excess N uptake
and transport to foliage, inorganic N toxicity may happen directly. In
that case, excess nitrogenwas diverted away fromphotosynthesis caus-
ing a decoupling in the functional allocation of photosynthetically used
nitrogen. As a result, photosynthetic capacity was down regulated, be-
cause the excess N could not be invested into the primary processes of
carboxylation (Bauer et al., 2004).

Another question arose from the divergent responses of photosyn-
thesis capacity between the two medium-light species (C. concinna
and C. chinensis) and the shade tolerant species C. concinna. We suspect
that higher foliar K, Ca, and Mg concentrations may play an important
role in alleviating excessive N toxicity in R. canthioides, because the
ratios of N/K, N/Mg, and N/Ca were significantly lower than for the
other two plants (data not shown). Possibly, Al toxicity could happen
in C. concinna and C. chinensis with the increase of Al concentrations
and decrease of the Ca/Al ratios. At the same time, the inhibition of or-
ganic N synthesis in High-N treatmentsmay induce inorganic N toxicity.
Accordingly, C. concinna and C. chinensis may lack a better strategy to
utilize excess N, and thus increase the risk of nutrient imbalance.
Hence, the shade tolerant species R. canthioides, which grows in under-
story all the life, could respond much better than the other two species
in high N deposition. These results suggest that medium-light species
could be more sensitive to high N inputs than shade tolerant species
in tropical forests.

As expected, with increased foliar N content, PNUE of all species de-
creased significantly. There was a significantly negative correlation be-
tween PNUE and Nmass across all plots (Fig. 2). But there was no
significant correlation between PNUE and LMA. Hence high N concen-
trations were the most important reason for the decrease in PNUE.
Lower PNUE and a lack of increase in net photosynthesis with foliar N
might indicate that the diffusion of CO2 to RUBISCO active sites in the
chloroplast and/or partitioning of foliar N to the photosynthetic appara-
tus are less at a given foliar N concentration (Lloyd et al., 1992;
Wullschleger, 1993). In the N addition plots, photosynthetic capacity
was not simulated by increased foliar N concentrations, suggesting
that additional foliar N did not contribute to increasing photosynthetic
rates. Consequently, PNUE could be a more sensitive indicator than foli-
ar N and Pmax to assess status of plants persisting under high N inputs.
In other studies, however, above aminimumNconcentration in the leaf,
PNUE could increase up to amaximum and then decline again (Lambers
et al., 1989). If the leaf N concentration is far above the optimal level,
trees will show serious nutrient imbalance, growth disturbance and
chlorotic foliage (Van Dijk and Roelofs, 1988; Kaupenjohann et al.,
1989; Fangmeier et al., 1994).
5. Conclusions

Thepresent study examined foliar nutrient status, Nmetabolites and
photosynthetic capacity of three dominant understory species in an N-
rich mature tropical forest. We found that two years of N addition in-
creased foliar N content, but decreased the content of nutrient cations
(e.g., K, Ca and Mg). Nitrogen addition also increased N accumulation,
mainly as soluble protein and/or free amino acid, but not as chlorophyll
in all three species.We further found that thephotosynthesis capacity of
medium-light species C. concinna and C. chinensiswasmore sensitive to
N addition than that of the shade tolerant species R. canthioides. Howev-
er, PNUE significantly declinedwithN addition for all three species, with
significantly negative relationships between PNUE/Pmax and foliar N
content. These findings suggest that excess N inputs can promote nutri-
ent imbalances, and inhibit photosynthetic capacity of understory plant
species, indicating high N deposition can threaten understory plant
growth in tropical forests in the future. Meanwhile, PNUE can be used
as a sensitive indicator to assess ecosystem N status under high N
deposition.
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