36 3 Vol.36  No.3

2017 6 MARINE ENVIRONMENTAL SCIENCE June 2017
1 23 3 1
(1. 210008; 2.
210098; 3.
210098)
MIKE3 N N N
: : MIKE 3 ;
1 X143 .\ :1007-6336(2017) 03-6406-10

DOI:10.13634/j.cnki.mes.2017.03.014

Modelling flow transport based on the particle tracking in tidal channels

of radial sand ridges in south Yellow Sea
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Abstract: A three-dimensional hydrodynamic model coupled with a Lagrangian particle tracking model was applied at
the Xiyang Chenjiawucao Kushuiyang and Huangshayang tidal channels in the radial sand ridges area of the South
Yellow Sea in order to investigate the flow and mass exchange characteristics between different channels. Results
showed that net displacements of surface particles in the flood tide were larger than that in the ebb tide. During the
neap tides the particles in both the surface and bottom of four channels were limited in respective channels character—
ized by similar reciprocating trajectories. During the spring tides the particles moved along reciprocating straight lines
or in a clockwise spiral. The trajectories of particles changed across different channels layers and at different relea—

sing time. The particle movement range of the surface layer was larger than that at the bottom layer. The hydrodynam—
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ic characteristics of the radial sand ridges are responsible for the significant differences of transport characteristics in
different channels. The Xiyang channel is controlled by the reciprocating flow while other regions are dominated by the
swirl flow of the different degree. The vertical circulation and water exchange in tidal channels were more obvious in
spring tides compared to those in neap tides. The crosswise transport of the particle depended on the relative flow ve—
locity of the vertical circulation. The special geomorphology also played an important role. Most particles of the vertex
of sand ridges were shoreward only a few were along the south and north shore indicating the shoreward tendency of
the water movement and mass transport. The outcomes of this study may provide theoretical support for environment
management regarding radial sand ridges.
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Fig. 1 Bathymetry of the simulation area and locations of

hydrological gauging stations
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Fig. 3 Distributions of tidal current vector ellipses of

the M2 constituent on the southern Yellow Sea
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Fig. 8 Trajectories of particles in tidal channels
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