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ABSTRACT 
Mathematical modeling is extensively used for ecohydrological 
processes because it facilitates data acquisition. However, modeling 
of soil moisture and heat remains challenging in dry ecosystems. In 
this study, we examined the performance of four models in simulating 
hydrological processes in a semi-arid mountain grassland (SMG), and 
in shrubland forming a transitional zone between the desert and an 
oasis (desert–oasis ecotone; DOE) in northwestern China. We used 
precipitation, air temperature, humidity, atmospheric pressure, and 
other meteorological variables to estimate moisture and temperature 
at different soil depths. Four methods were used to test model 
performance, including partial least squares (PLS) regression, stepwise 
multiple linear regression (SMR), back-propagation artificial neural 
network (BPANN), and neural network time series. Our results showed 
that BPANN had the best prediction accuracy and supplied a robust 
modeling framework capable of capturing nonlinear environmental 
processes by improving the stability of the weight-learning process. 
Soil depth in SMG for which model performance was optimized was 
20 cm for PLS and SMR. Additionally, artificial neural networks (ANNs) 
have a remarkable applicability compared to other algorithms for 
increased accuracy in time-series predictions; however, they could not 
depict soil moisture or temperature dynamics at 160 cm depth in 
SMG, and at 10 cm depth in DOE. Using conventional meteorological 
data as primary predictors, and avoiding the complexity of distributed 
hydrological models can be helpful in developing a regional capacity 
for soil moisture and heat forecasting. 
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Introduction 

Soil moisture and temperature dynamics influence calculations of water and energy 
budgets, and water circulation on Earth, and are critical to research on global climate 
change (Wofsy et al. 1993; Kokaly and Clark 1999; Klemas, Finkl, and Kabbara 2014). Arid 
ecosystems in China are under intense development and climate change pressure that lead 
to increasing land degradation. To reverse land degradation, vegetation restoration 
programs are growing in popularity. However, the efficacy of these programs in arid 
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ecosystems is entirely dependent on water resources management, including estimating of 
groundwater budgets, management of agricultural irrigation, and monitoring of drought 
conditions (Dumedah, Walker, and Chik 2014; Yang et al. 2016), among others. Therefore, 
a high level of precision in soil moisture monitoring is critical to these operations. 

Soil temperature at a soil-layer resolution is an indicator of the thermal properties of the 
soil profile; it has fundamental uses in climatology, engineering, and agriculture, and plays 
an essential role in numerical hydrological modeling (Gao et al. 2008) and in agricultural 
management (Yilmaz et al. 2009). 

Drought conditions remain relatively under-studied compared to other aspects of the 
water cycle (Thomas, Qin, and Gian-Kasper 2013). The process of drought formation is 
complex and unpredictable due to the inherent nonlinear relationships between meteoro-
logical factors and topographic parameters. Additionally, increases in global temperature 
threaten the modest water resources of arid lands, as higher temperatures not only increase 
evaporation rates, but also plant water demand (Hutchinson and Herrmann 2008). 
Furthermore, due to low water retention and high infiltration and leaching rates, sandy 
soils are generally dry and therefore not suitable for plant growth. 

Predictions of soil moisture may involve complex modeling such as possible with 
ecohydrological models, or simple forecasting. Unlike ecohydrological models, soil moist-
ure-forecasting systems do not incorporate meteorological factors or explicit mechanisms 
driving soil moisture. For that reason, data-driven models such as stepwise multiple linear 
regression (SMR) and artificial neural networks (ANNs) have gained in popularity in 
recent years (Dursun and Ozden 2014; Ganguli and Reddy 2014; Nourani et al. 2014). 
Data-driven models use programming with statistical and machine-learning approaches 
to solve applied problems. For example, the ANN algorithm could achieve high accuracy 
in estimating missing soil moisture records. This is possible because ANN is a 
regression-based dynamic network that allows feedback connections through discrete-time 
estimation (Dumedah, Walker, and Chik 2014). Ganguli and Reddy (2014) used a support- 
vector machine–copula approach to show that it can improve drought-forecasting 
capability. Yu et al. (2012) used in-situ surface-air temperature, solar radiation, relative 
humidity, and antecedent soil temperature and moisture to predict soil moisture at mul-
tiple layers using support-vector machines and data-assimilation techniques. This research 
indicated that data-driven techniques can be used for soil moisture forecasting. Nourani 
et al. (2014) reviewed the hybrid wavelet and artificial intelligence (AI)-based models for 
functionality in simulating hydrologic processes, and concluded that the robustness and 
accuracy of wavelet-AI justified the increased use of this approach in hydrology. 

In practical situations, the main focus is on providing accurate forecasting for selected 
areas, and the usefulness of a model depends on its simplicity and robustness in solving 
actual problems (Latt and Wittenberg 2014). A recent review of the applications of 
data-driven models in hydrological processes revealed that almost all of the existing studies 
concentrated on areas with multiple rainfalls. However, soil moisture is exceedingly low in 
arid and semi-arid regions; therefore, simulations or estimations of soil moisture dynamics 
are challenging (Si et al. 2015), and it is not clear whether nonlinear data-driven models 
can provide a satisfactory performance in such conditions. 

The relationships among soil moisture conditions, vegetation succession, and ecosys-
tem restoration and agriculture management are complex, and they require a hybrid 
model with multi-step forecasting for both regression models and ANN (Latt and 
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Wittenberg 2014). This approach was applied to the Chindwin River Basin in northern 
Myanmar, an area with a tropical monsoon climate, and the conclusions were not appli-
cable for arid regions (He et al. 2014). Ma et al. (2004) found that soil moisture correlated 
with environmental factors at different scales in areas where annual precipitation was 
between 500 and 850 mm; they used this correlation to calculate thresholds of soil moist-
ure specific for meadows, shrubs, and forests. Si et al. (2015) analyzed the performance of 
an adaptive neuro-fuzzy technique in soil moisture modeling using antecedent moisture 
conditions at 40 and 60 cm soil depths in an extremely arid area of the Ejina basin, in the 
lower reaches of the Heihe River in China. However, the investigation did not account 
for the superficial soil layer at 0–10 cm, which is extremely sensitive to weather 
conditions, or the deepest soil layer at >100 cm, where soil moisture affects deep 
roots, important for plant survival (Breshears and Barnes 1999). Despite the efforts 
at modeling of soil hydrology, there are still no tools that can efficiently predict soil 
moisture and heat in arid areas. 

The work reported here had three aims: (1) to verify the feasibility of simulating 
soil water content and heat in arid regions using weather parameters; to achieve this, we 
compared four mathematical algorithms for modeling complex water and heat trans-
mission systems, (2) to determine which model performed best; here, we evaluated the 
response to climate factors of soil water and heating processes at different soil depths. 
Our results provide a reference for vegetation restoration and agricultural management. 
Vegetation restoration in mountainous areas in the desert–oasis ecotone (DOE) is critical 
to the recovery of regional ecological function. Accurate estimation of water and heat 
transmission in the soil profile is vital to an effective design of vegetation restoration, 
and in farm management. This study was an effort to improve soil moisture and heat 
forecasting. 

Methodology 

Study sites 

Soil moisture and temperature data were obtained at two locations: a grassland bordering a 
Picea crassifolia Kom. forest in the Qilian Mountains, and a desert–oasis transition zone in 
Linze County, both sites near the town of Zhangye, Gansu Province, China (Figure 1). 

Semi-arid mountain grassland 
The first site was a semi-arid mountain grassland (SMG) in the Pailugou catchment in the 
Qilian Mountains, northwestern China (38°33017″N, 100°1709″E). This is a shady forest 
land at an elevation of 2700 m, with a mean slope of about 20°, mean annual precipitation 
of 375.5 mm, and average temperature of 0.5°C; data used here were means of the past 15 
years (He et al. 2012). Vegetation reaches about 25 cm in height, with mean plant cover of 
about 90% (He et al. 2012; Yang et al. 2016). Soils are mainly montane chestnut, found 
primarily in sunny exposures at elevations of 2720–3000 m. Mean soil depth is about 
40 cm, with organic matter content of the surface soil of 2–4%, and pH of 8.0–8.5. 
Additionally, mountain forest grey-brown soils, found on shaded slopes at elevations 
between 2600 and 3770 m (Yang et al. 2016), reach almost 67 cm in depth, and exhibit a 
20–30 cm depth of sod; percentage of clay, silt, and sand is 14.2, 30, and 55.8, respectively; 
these soils exhibit a pH value of 7.0–8.0, and an organic matter content in the upper soil of 
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about 10–25%. Vegetation on the northern (shaded), northwestern, and northeastern 
(partly shaded) slopes includes native grasslands and P. crassifolia Kom. plantation forests. 
The southern, southwestern, and southeastern exposures (sunny and partly sunny) are 
dominated by low grasses. The study site is near the timberline. Statistical characterization 
of soil temperature and moisture for both sites is found in Table 1. 

Desert–oasis ecotone 
The second site was located at the northeastern edge of the Zhangye oasis in northwestern 
China (39°2209″N, 100°0702″E) at an elevation of 1382 m, and near the Linze Ecological 
Observational and Experimental Station. Topography is characteristic of a vast plain. It 
is a semi-desert transitional zone between oasis and desert, characterized by sparse 
vegetation and a sandy substrate. The zonal soil is desert soil, with coarse texture (particle 
size between 0.05 and 0.25 mm in diameter account for 80–90% of the total). The climate is 
continental arid temperate. Mean annual precipitation is 117 mm (Zhao, Li, and Fang 
2007), falling mainly in summer, with the dryness index (evaporation divided by 

Figure 1. Map showing study locations semi-arid mountain grassland (SMG) and desert–oasis ecotone 
(DOE). (Note: The background picture is Shuttle Radar Topography Mission DEM of the Heihe River Basin, 
the peak elevation is at the Qilian Mountain (elevation ¼ 5328 m), and the lowest point is at the Alashan 
Highland end of the Heihe River in the north (elevation ¼ 852 m)).  

Table 1. Daily soil water content and temperature in the 0–20 cm layer at SMG (statistical values for 
years from 2009 to 2013) and DOE (for years from 2010 to 2011). 

Site Parameter Number of records Range Minimum Maximum Mean Std. error Std. deviation Variance  

SMG Soil water content 680  32.68  7.5  40.18  18.16  0.33  8.68  75.26 
Soil temperature 680  26.08  −12.53  13.55  1.15  0.26  6.74  45.38 

DOE Soil water content 394  9.55  1.66  11.21  3.68  0.12  2.34  5.46 
Soil temperature 394  35.55  −3.79  31.76  20.85  0.43  8.51  72.5 

SMG, semi-arid mountain grassland; DOE, desert–oasis ecotone.   
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precipitation) of 20.54. Air temperature averaged about 7.6°C between the years 1965 and 
2000 (Zhao, Li, and Fang 2007). The dominant species are shrubs Nitraria sphaerocarpa 
Maxim and Chenopodiaceae. Soil texture is dominated by wind-blown sand. Mean soil 
moisture was about 2.13% at the 0–20 cm soil depth (He and Zhao 2004), and 3.4% at 
10–20 cm depth. Vegetation cover (desert shrubs) ranges from 5 to 7% and the landscape 
is dominated by fixed, semi-fixed, semi-mobile, and mobile sand dunes (Zhao and 
Liu 2010). 

Data 

Data were collected in 2009 and 2013 at SMG and in 2010 and 2011 at DOE. Time 
periods of the observations varied. Observations at SMG included a training period from 
20 January 2010 to 31 December 2010 and validation period from 1 January 2011 to 
30 November 2011. Observations at DOE included a modeling period from 1 February 
2013 to 30 September 2013 and validation period from 17 May 2009 to 15 October 
2009. We collected data on soil moisture with a time domain reflectometer (Campbell 
Scientific, Inc., Logan, Utah). Moisture probes were placed horizontally in the middle of 
each of the tested soil depths. Soil water content for all soil depths at both study sites 
was volumetric. Soil temperature data were collected continuously with Campbell 109ss 
temperature sensor probes (Campbell Scientific, Inc., Logan, Utah), and had the same time 
series as soil moisture data. Depth of monitoring was the same for both types of probes at 
10, 20, 30, 40, 50, 60, 80, and 100 cm. The type of meteorological data obtained from an 
automatic comprehensive weather station, soil depth, and type of meteorological data used 
in the study are given in Table 2. 

All data were collected at 30-min intervals and averaged to daily values for this study. 
Data were processed, and numerical simulations were performed using Matlab R2010b 
(The Mathworks, Inc., Natick, MA). 

Input variables for the models were a combination of meteorological factors, and the 
calibration and validation data consisting of soil moisture or soil temperature vector at 
each soil depth. All models were constructed using the same input variables and simulation 
periods. 

Table 2. Soil characteristics at two study sites for individual soil depths. 
Depth Meteorological parameters 

SMG (cm) DOE (cm) SMG DOE  

20 10 Temperature max. 1.5 m (°C) Temperature mean 1.5 m (°C) 
40 20 Temperature min. 1.5 m (°C) Land surface temperature (°C) 
60 30 Temperature mean 1.5 m (°C) Humidity 1.5 m (%) 
80 40 Land surface temperature (°C) Global radiation (W/m2) 
120 50 Humidity 1.5 (%) Atmospheric pressure (Pa) 
160 60 Net radiation (W/m2) Wind speed (m/s)  

80 Global radiation (W/m2) Precipitation (mm)  
100 Reflection    

Atmospheric pressure (Pa)   
Wind speed (m/s)   
Heat flux (W/m2)   
Precipitation (mm)  

SMG, semi-arid mountain grassland; DOE, desert–oasis ecotone. 
Note: Height of measurement for atmospheric pressure was 0.5 m, precipitation was 1.0 m, and other meteorological 

parameter was 1.5 m at both study sites.   
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Models used in forecasting 

In this study, four algorithms were compiled with Matlab script, and the operational 
processes of all algorithms were similar to each other. We describe the details of PLS’s run-
ning processes as an example of any one algorithm. First, we compiled the PLS function in 
a functional form, which was used in calling of the function. Second, we compared 
meteorological variables (often called independent X) with the validation data (often called 
dependent Y; our variables were soil water content or soil temperature at different soil 
depths). All the input and validation variables were combined as one-time input data. In 
the third step, we combined the independent variables with their sensitivities to predict 
values for the dependent variables. Last, validation and the evaluation indicators were 
produced as separate files. The concept, characteristics, and arithmetic of the four 
algorithms are shown below. 

Partial least squares regression 
The partial least squares (PLS) regression is a statistical method that generalizes and 
combines features from principal component regression and multiple regression (PLSR) 
(Mevik and Wehrens 2007). A PLS attempts to determine a multidimensional direction 
in X space that explains the maximum multidimensional variable direction in Y space, 
where X and Y are two matrices. PLS is particularly suited for situations when multi- 
collinearity occurs among input variables, and standard regression fails (unless it is 
controlled); steps of the algorithm can be found in Abdi (2007). 

Stepwise multiple linear regression 
Stepwise multiple linear regression is the extended form of simple linear regression. SMR 
aims to intercept as much of the variability of a response as possible, leaving as little of the 
variation as possible to be explained as “noise” (Kokaly and Clark 1999). The general form 
for n independent variables can be expressed as: 

Y ¼ a0 þ a1X1 þ a2X2 þ � � � þ anXn þ e ð1Þ

where Y is the response variable; α0, α1, α2, and αn are regression coefficients; ε is error; and 
X1, X2, and Xn are independent variables. 

Partial least squares and SMR determined the strength of the linear relationships 
between the input and output variables. We chose SMR because it eliminated the influence 
of strong correlations among meteorological variables (e.g., air temperature, net radiation, 
and wind speed). 

Back-propagation artificial neural network 
A neuron is a nonlinear, parameterized, and bounded function that is fundamental to the 
operation of a neural network (Dreyfus 2005). A neural network is a parallel-distributed 
processor composed of simple processing units, with a natural propensity for storing 
experiential knowledge and making it available for use (Haykin 1999). A neural network 
may be thought of as self-evolving approach. Back-propagation, developed by Rumelhart, 
Hinton, and Williams (1986), is a gradient-descent algorithm that compares simulated 
outputs with observed values to minimize error; it has been widely used since its 
development. Computation in each unit is accomplished in two steps. The first step 
involves a summation junction, a linear function that computes the weighted-sum of the 
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inputs. The second step engages nonlinear activation, which returns the final transformed 
value of the weighted sum. Figure 2 shows an example of a multi-layered back-propagation 
artificial neural network (BPANN) that can be used to associate input consisting of three 
units with two decisions. 

In Figure 2, net and H can be represented as [Eq. (2)] and [Eq. (3)]. 

net1h ¼
X

i
Wih � Xi � h1h ð2Þ

H1h ¼ f net1hð Þ ¼
1

1þ e� net1h
ð3Þ

where W is the weight between neurons (such as Wnm in Figure 2), Xi is the ith input 
predictor variable (such as Xn in Figure 2), h is the number of transfer functions (activation 
functions that define output of that node given input, such as the number of transfer 
functions of hidden layer 1 in Figure 2) for the hidden layer 1, θ is a transfer function (such 
as h1h of hidden layer 1 in Figure 2). The network shown is well connected, and a neuron 
(a combination of netmh and Hmh in Figure 2) at any one layer of the network can be linked 
to any nodes (any one of the input variables, neurons or the output variables, such as Xn, 
H1h or Y2 in Figure 2) in any other layers. Signals propagate through the network in two 
directions, with the function signal (weight that varies as learning proceeds, such as Wnn in 

Figure 2. Diagram of a multi-layered BPANN with hidden layers and back-propagation of error signals. 
Notes: hidden layer is a system of weighted “connections,” which connect via the “input layer” link to an 
“output layer”; ellipses indicate variables used in BPANN, x1, x2, … , xn indicate neurons, net11 … net1h 
indicate nodes of the network, rectangles are components of BPANN network, arrows indicate 
explanations of the elements used in BPANN network, triangle indicates evaluation index of the network, 
grey background indicates that the content explains the construction of BPANN network. Note: BPANN, 
back-propagation artificial neural network.   
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Figure 2) moving forward, and the error signal moving backward. A function signal enters 
the network at the input terminal, and travels to the output. Similarly, an error signal pro-
duced at the output terminal travels backward through the network layers (Figure 2). 

Hidden neurons (neurons that cannot be controlled by researchers in the computational 
processes) involve two computations. First computation generates the function signal, 
represented as a continuous nonlinear function of the input signal and of the synaptic 
weights (wii) associated with the neuron. Second is the computation of an estimate of 
the gradient vector (the derivative of the loss function with each term wnn to �w, where 
�w is the mean of the weights) needed for the backward pass through the network. 

The error signal (output) of a neuron i for an iteration n may be described as: 

eiðnÞ ¼ diðnÞ � yiðnÞ ð4Þ

where di(n) is the observed value, and yi(n) is the modeled value. Then, the total error eðnÞ
is calculated as the sum of errors 1

�
2e2

i ðnÞ over all neurons. 

eðnÞ ¼
1
2

X

i¼C
e2

i ðnÞ ð5Þ

If N is set equal to the total number of configurations (one configuration is a combi-
nation of the input variable, hidden layer, and output variable) present in the training 
set, the average squared total error is the sum eðnÞ over all n normalized for the set size 
N. Thus, it may be represented as: 

eav ¼
1
N

XN

n¼1
eðnÞ ð6Þ

Because neural networks do not require that input data satisfy specific statistical 
distributions, a distinctive benefit of using neural networks is the opportunity to work with 
multiple sources of data (Brown et al. 2008). 

During the training of ANN, the modeler must confirm that some parameters increase 
the accuracy and convergence speed of ANN; this concerns such parameters as the number 
of hidden layers and neurons in each layer. Because there is no general and explicit method 
for the selection of optimal parameters for ANN, we used an automated trial and error 
method. In the first step, we determined the performance criteria of ANN. In our study, 
four criteria were considered: coefficient of determination (R2), root mean square error, 
the mean absolute relative error, and relative percent deviation (DRP). Definition and 
description of each criterion can be found below. We determined the number of neurons 
in the layers in the second step, and the desirability function (a function used to get optimal 
values of input variables) used to optimize responses simultaneously, in the third step. For 
analysis of performance for a combination of effective parameters, we used a genetic algor-
ithm (GA) applied to finding the optimum combination of sets of factors. For more on GA, 
see Koza (1992) and Ahn (2006). 

Neural network time series 
The neural network time series (NNTS) fits the data with a two-layer feed-forward network 
(an ANN in which information moves in only one direction), a linear transfer function in 
the output layer, and a sigmoidal transfer function in the hidden layer (Frank, Davey, and 
Hunt 2001). Differences between NNTS and BPANN exist if there is a back-propagation 
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signal and a time-series function in BPANN. The delay in the artificial network was set for 
2 days, and the hidden layer size was 12. Because neural networks can be viewed as highly 
nonlinear functions, the training processes may be considered as function optimization; 
here, three optimization algorithms were used, including Levenberg–Marquardt (trainlm), 
Bayesian regularization (trainbr), and scaled conjugate gradient (trainscg) to determine the 
best network parameters, including weights and biases in network learning. For our 
application, we used the default training function (trainlm) because the output was obtain-
able during network training. We used the open-loop architecture with true output instead 
of the estimated output; this way, we obtained a more efficient algorithm for training. The 
default number of hidden neurons was set to 10, and the default number of delays was 2. 

The network uses tapped delay lines to stockpile previous values of the x(t) and y(t) 
sequences (a list of observational series or validation series with time order), these can be 
used to solve time-series problems. There are two input factors, input series x(t) and an out-
put series y(t). For this study, we wanted to predict the values of y(t) (e.g., soil moisture) 
from previous values of x(t) (e.g., precipitation), with no knowledge of previous values of 
y(t). This mapping relationship between input and output data can be written as follows: 

y tð Þ ¼ f y t � 1ð Þ; . . . ; y t � dð Þð Þð Þ ð7Þ

where t is the number of days to simulation, and d is the number of delay days. The 
algorithm uses error-autocorrelation and input-error cross-correlation functions to verify 
network performance. For a high-performing prediction model, the value of the error- 
autocorrelation function cannot equal 0 at 0 lag, which means that the prediction errors 
must be completely uncorrelated with each other. In case of a significant correlation in 
the prediction error, network retraining (changing the initial weights and biases of the 
network) or increasing the number of delays in the tapped delay lines (a delay line with 
at least one “tap”) may improve prediction performance. 

When network performance is unsatisfactory during validation, it is possible to (1) train 
it once more, (2) increase the number of neurons and/or the number of delays, and (3) 
obtain a larger training data set. Over-fitting of the training can occur when validation per-
formance decreases further, but the training set is of high quality; in such case, the number 
of neurons can be reduced to improve results. 

The advantages and disadvantages of the four numerical models are summarized in 
Table 3. 

Assessment of model performance 

Standard statistical criteria facilitate model evaluation for accuracy of simulation results 
and of measured records (Latt and Wittenberg 2014). We used coefficient of determination 
(R2) [Eq. (8)], error sum of squares (ERMS) [Eq. (9)], mean absolute error (EMA) [Eq. (10)], 
and the ratio of standard deviation to ERMS (DRP) [Eq. (11)]; DS [Eq. (12)] is an 
intermediate variable between Eqs. (10) and (11). It is very helpful to confirm the strength 
of various approaches, and we considered DRP in our uncertainty estimation. 

R2 ¼ 1 �

Pn

i¼1
Ws � Wfð Þ

2

Pn

i¼1
Ws � Ws
� �2

ð8Þ
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ERMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1
Wo � Wsð Þ

2

n

v
u
u
u
t

ð9Þ

EMA ¼

Pn

i¼1

Ws� Wf
Ws

�
�
�

�
�
�

n
ð10Þ

DRP ¼
Ds

ERMS
ð11Þ

DS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1
Ws � Ws
� �2

n � 1

v
u
u
u
t

ð12Þ

where Wo is the time series of measurement values (soil moisture or soil temperature), Wf 
is the observation fitted with a linear function, Ws is the value predicted from measurement 
data, Ws is a series of mean predicted values, i is the number of samples, n is the number of 

Table 3. A comparison of advantages and disadvantages of the four algorithms. 
Algorithm 
name Characteristics Advantages Disadvantages  

PLS Useful in common cases where the 
number of descriptors 
(independent variables) is 
comparable to or greater than 
the number of data points,  
and/or other factors exist 
leading to correlations between 
variables 

Robust; non-orthogonal 
descriptors; multiple 
biologic results; much lower 
risk of chance correlation 

Higher risk of overlooking “real” 
correlations; sensitivity to the 
relative scaling of the 
descriptor 

SMR The dependent variable must be 
continuous or nearly 
continuous, the independent 
variable can be categorical or 
continuous 

Better prediction from 
multiple predictors; can 
“avoid” picking/depending 
on a single predictor; can 
“avoid” non-optimal 
combinations of predictors 

Stepwise methods will not 
necessarily produce the best 
model if there are redundant 
predictors; stepwise methods 
have an inflated risk of 
capitalizing on chance features 
of the data 

BPANN BPANN can be used to perform 
nonlinear statistical modeling, 
and provides a new alternative 
to logistic regression 

Requires less formal statistical 
training; ability to implicitly 
detect complex nonlinear 
relationships between 
dependent and 
independent variables; 
ability to detect all possible 
interactions between 
predictor variables; 
availability of multiple 
training algorithms 

“Black box” nature; greater 
computational burden; prone 
to over-fitting; the empirical 
nature of model development 

NNTS Fits the data with a two-layer 
feed-forward network, a linear 
transfer function in the output 
layer, and a sigmoidal transfer 
function in the hidden layer 

Has a time-series function; can 
approximate nonlinear 
functions without any a 
priori information about the 
properties of data series 

There is no “perfect”  
machine-learning method; the  
Vapnik–Chervonenkis (VC) 
dimension of neural networks 
is unclear; neural networks 
cannot be retrained 

PLS, partial least squares regression; SMR, stepwise multiple linear regression; BPANN, back-propagation artificial neural 
network; NNTS, neural network time series. 

Note: Vapnik–Chervonenkis (VC) is a form of computational learning theory, which attempts to explain the neural network 
learning processes from a statistical point of view.   
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days with computed parameters. Low values of ERMS and EMA indicate a better fit, with a 
value of 0 indicating optimal model performance. R2 is the correlation coefficient between 
the observed and the predicted values, with a range from 0 to 1. 

According to Chang et al. (2001), DRP can be categorized into three types: A (DRP ≥ 3.0), 
B (2 < DRP < 3.0), and C (DRP � 2.0). A indicates that models perform well, B indicates that 
models perform in general and can be improved with calibration strategies, and C meaning 
that variables cannot be predicted reliably using a model correction, and the model cannot 
be used for forecasting (Fontaine, Schirmer, and Horr 2002). We used these criteria to 
determine model performance. 

Figure 3 shows the flow between input parameters, numerical algorithms, study sites, 
and simulation output data. 

Results 

Least squares regression and stepwise multiple linear regression 

Both statistical and graphical model results were evaluated. The performance of PLS and 
SMR was poor for both model calibration and validation, except for the PSL validation 
results for soil temperature at DOE (Table 4 and Figure 4). These results indicated that 
the two models (PLS and SMR) could not simulate the feedback relationships between 
meteorological factors and soil water and heat transmission processes. However, the linear 
functions can be used for the soil-temperature simulation at DOE. If we excluded the 
calibration period and attended to the validation results, the performance at 20 cm depth 
at SMG was acceptable; at other depths, performance was still poor (DRP < 2.0), with the 
performance rating of “C.” 

Figure 3. Input variables and methodologies of simulation processes.  
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Back-propagation artificial network 

Back-propagation artificial neural network results for calibration indicated over-fitting, but 
the performance at SMG was satisfactory (Table 4 and Figure 4). The performance at DOE 
was worse than at SMG, with the best prediction DRP of soil moisture of 3.16, and that of 
soil temperature of 2.04; consequently, the performance for DOE was categorized as “B.” 
A comparison of validation performance for individual soil depths at SMG indicated that 
both the soil water content and soil temperature results at 20 cm were not as well repre-
sented as those at other depths; however, at DOE, there were no noticeable differences 
among soil depths. The DRP values at DOE ranged from 1.12 to 3.16 for the validation 
of soil water content, and from 1.81 to 2.04 for the validation of soil temperature. 

Neural network time series 

We found that the performance of BPANN and NNTS was the same, based on DRP. 
However, the representation of simulation results at SMG was superior to that at DOE. 

Table 4. Ratio of standard deviation to error sum of squares (DRP) for different soil depths at SMG and 
DOE following model evaluation between the calibration and validation, CSM: Calibration of soil 
moisture, CST: Calibration of soil temperature, and VSM and VST: Validation of soil moisture and 
temperature.  

Soil depth (cm) 

SMG 

Soil depth (cm) 

DOE 

PLS SMR BPANN NNTS PLS SMR BPANN NNTS  

CSM 20  1.00  0.97  18.26  18.92 10  0.94  0.80  2.29  2.67 
40  1.26  1.67  52.67  52.47 20  1.05  1.05  7.20  11.66 
60  1.92  1.92  76.02  81.65 30  0.63  0.81  28.12  4.57 
80  1.06  1.29  13.65  14.26 40  0.79  0.87  25.85  17.22 

120  1.12  1.48  58.12  39.92 50  1.42  1.43  38.26  27.49 
160  1.28  1.35  30.64  32.90 60  2.35  2.40  37.79  25.00      

80  3.18  3.57  53.69  31.72      
100  3.31  3.63  52.36  34.98 

CST 20  6.66  6.59  22.35  19.79 10  4.16  4.37  12.73  12.76 
40  3.48  16.81  58.72  47.04 20  3.72  4.42  28.32  21.60 
60  2.57  6.89  95.45  89.96 30  3.20  4.21  27.74  30.43 
80  2.02  3.97  119.47  130.83 40  3.80  3.98  49.81  46.60 

120  1.39  2.12  101.80  87.62 50  3.60  3.73  38.53  62.89 
160  0.99  1.73  82.64  79.17 60  3.46  3.58  51.49  77.84      

80  3.17  3.27  136.01  135.70      
100  2.91  1.84  197.74  163.50 

VSM 20  1.10  1.06  10.92  12.53 10  0.34  0.27  2.02  1.93 
40  1.27  0.53  17.97  17.41 20  0.50  0.42  2.98  2.83 
60  1.15  1.40  37.30  33.21 30  0.94  0.66  1.70  2.09 
80  1.16  0.60  12.69  11.62 40  0.92  0.55  1.83  2.11 

120  0.53  0.56  14.11  11.88 50  0.17  0.08  1.12  0.64 
160  0.26  0.23  4.30  2.74 60  0.46  0.18  1.42  1.74      

80  0.81  0.30  2.79  3.22      
100  0.89  0.34  3.16  4.40 

VST 20  6.65  3.89  14.62  10.98 10  4.16  1.73  1.81  1.91 
40  1.45  1.01  22.14  24.69 20  5.01  1.62  2.04  2.15 
60  1.23  0.85  26.61  25.13 30  3.02  0.91  1.83  1.80 
80  1.05  0.78  29.36  38.78 40  4.49  1.41  2.02  1.99 

120  0.84  0.66  36.70  51.70 50  4.26  1.34  1.95  1.97 
160  0.74  0.55  29.43  27.13 60  4.25  1.34  1.90  1.93      

80  3.60  1.14  1.95  1.90      
100  2.98  1.13  1.94  1.96 

SMG, semi-arid mountain grassland; DOE, desert–oasis ecotone; PLS, partial least squares regression; SMR, stepwise multiple 
linear regression; BPANN, back-propagation artificial neural network; NNTS, neural network time series.   
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Figure 4. Comparisons of observed vs. Validation data for soil moisture and temperature for individual 
soil layers obtained with four numerical algorithms: partial least squares regression (black square), 
stepwise multiple linear regression (red hollow circle), back-propagation artificial neural network (blue 
upward triangle), and neural network time series (purple downward triangle) at semi-arid mountain 
grassland (SMG) and desert–oasis ecotone (DOE). In the figure, the first two columns of plots show soil 
moisture and temperature at SMG. The third and fourth columns show soil moisture and temperature at 
DOE. Black solid line is the reference line (y ¼ x).  
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The performance at SMG differed across soil depths; optimal results for soil moisture 
were obtained at 60 cm depth, while those for the surface profile were not satisfactory. 
Performance at 80–120 cm depth was best for soil temperature validation, and indicated 
a continuously rising trend with depth of the soil profile. 

Discussion 

Stability analysis of the models 

Grossberg (1988) emphasized that the stability of nonlinear neural networks was one of the 
characteristics of model validation. Therefore, before model calibration and evaluation, two 
applications were executed to evaluate the stability of the algorithm. 

First, to determine the number of principal components (NPC) of the PLS algorithm in 
model calibration and validation, we evaluated PLS under different NPCs (from 1 to 7, 
and 12) (Figure 5). NPC of soil moisture and temperature for the two study sites represented 
different characteristics in PLS. Soil moisture and temperature forecasting for the surface soil 
depth needed a larger NPC than that for the subsurface. The NPC in Figure 3 indicates the 
best results of model evaluation during calibration and validation; in most cases, the NPC 
differed between the calibration and validation in PLS. Therefore, using the optimal 
parameters obtained during model calibration may result in suboptimal validation, and 
model construction may not be optimal either (Grossberg 1988). 

Second, we evaluated the performance of the four algorithms for three superficial soil 
depths after 20 repetitions (Figure 6). Graphical representations (Figure 6) indicated stab-
ility of the models used, and the linear algorithms had no uncertainty in the iterations. 
Contrary to that, the ANNs (BPANN and/or NNTS) were unstable in the iterations due 

Figure 5. Number of principal components (NPC) of the partial least squares regression (PLS) algorithm 
between the calibration and validation at different soil layers at two study sites. Shown are soil moisture 
(black squares) and soil temperature (circles). Label “1” denotes that the NPC remains at the same value 
between calibration and validation; label “2” means that different labels for soil temperature are found 
on the left of symbols; labels for soil moisture are found on the right of symbols. DOE: desert–oasis 
ecotone; SMG: semi-arid mountain grassland. Note: Depth of the soil layer was 10, 20, 30, 50, 60, and 
80 cm at DOE, and 20, 40, 60, 80, 120, and 160 cm at SMG.   
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to the self-learning mechanisms in which learning weights change in every modeling cycle 
(Dursun and Ozden 2014). Flexibility in the learning weights is one of the advantages of 
ANNs, but it is also a shortcoming in terms of its stability. Neural networks have a 
built-in capability to adapt their synaptic weights to changes in the weather environment. 
However, this adaptability does not always translate into increased robustness (Haykin 
1999). This problem was described as the stability–plasticity dilemma (Grossberg 1988; 
Yu et al. 2012), and further developments need to target the ability to retain the quality 
of the forecast and to increase the stability of the algorithm. 

Precipitation is the critical factor in soil moisture forecasting; however, while the 
influence of precipitation on soil moisture may be straightforward, the soil moisture- 
precipitation feedback is complex and affects many processes in the land–atmosphere 
interactions (Liu et al. 2014; Liu, Mishra, and Yu 2016). Precipitation patterns in arid 
regions were dominated by small events (�5 mm) although soil moisture was heavily 
dependent on precipitation (Zhao and Liu 2010). Almost all small rainfall events were 
consumed by evaporation (radiation forcing) from the land surface (Wei, Dirmeyer, and 
Guo 2008), and only large or extreme events exerted a strong relationship between soil 
moisture and rainfall (He et al. 2012). Thus, using climate factors to forecast soil moisture 
dynamics in arid regions is challenging because only large precipitation events yield 
a strong connection between the two variables; this was one of the main reasons for an 
unsatisfactory performance at DOE. The results indicated that climate patterns determined 
the estimation performance of the algorithms, and that the performance of soil 

Figure 6. Box-plots showing the stability of the ratio of standard deviation to error sum of squares 
(DRP) during 20 iterations of validation modeling for the top three soil layers (20, 40, and 60 cm depth 
at SMG, and 10, 20, and 30 cm depth at DOE) for soil moisture and temperature using four algorithms 
(PLS, SMR, BPANN, and NNTS). Note: DOE, desert–oasis ecotone; SMG, semi-arid mountain grassland; PLS, 
partial least squares regression; SMR, stepwise multiple linear regression; BPANN, back-propagation 
artificial neural network; NNTS, neural network time series.   
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temperature as a determinant of soil moisture was unsatisfactory. It appears that soil 
texture is another essential factor that affects heat transfer. High heat conduction, low heat 
capacity (Hamdhan and Clarke 2010), and high reflectivity of sand may intensify 
the exchange processes of soil moisture and heat, weakening the relationship between 
climatic factors, soil moisture, and soil temperature, especially in data-driven modeling. 
This indicates that arid environments with rapidly evaporating sandy soils and high- 
frequency small precipitation events need to receive special attention in hydrological 
modeling. 

Box-plots (Figure 6) indicated stability of soil moisture and temperature simulations in 
shallow soils at SMG and DOE; the interquartile range indicated that soil temperature at 
SMG had more complex nonlinear relationships with meteorological factors than did soil 
temperature at DOE. The highest estimation accuracy of PLS was another evidence of these 
relationships. The results for soil temperature at DOE represented a smaller degree of 
freedom with DRP than that at SMG, and this suggested that the relationship between 
climatic factors and soil heat processes was simpler than that for soil moisture. These 
results indicated that, in synchronized simulations of soil water content and temperature, 
soil temperature can be calibrated first, and soil water content next; this knowledge will be 
invaluable for modeling of hydrological processes in rain-fed agriculture in arid areas. 

Evaluation of the models 

To demonstrate the performance of the four models, we plotted validation results for 
several soil depths (20, 40, 60, 80, 120, 140, and 160 cm depth at SMG, and 10, 20, 30, 
50, 60, and 80 cm depth at DOE) (Figure 4). To obtain a one-to-one correspondence of soil 
depths, we excluded the 40 and the 100 cm soil layers at DOE. This empirical study showed 
that, with climatic parameters as the input data, the numerical algorithms were one of the 
critical steps in the characterization of soil water content and heat at various depths. These 
results were similar to those in previous studies (Bilgili 2010; Deng et al. 2011). Our study 
resulted in a new method that increases the understanding of soil water and temperature 
dynamics especially for regions with dramatically heterogeneous environments. 

Clearly, the performances of BPANN and NNTS were superior to those of the other two 
models, and both PLS and SMR failed to capture the dynamics of most of the processes. 
These results indicated that the linear statistical forecast models were unable to capture 
the non-stationary and nonlinear procedures, reflecting the conclusions of Elshorbagy 
and Parasuraman (2008), and Bilgili (2010). This was evidence of the nonlinear 
dependency between soil water, soil heat, meteorological factors, and the multilayer 
perceptron (in machine learning, the perceptron is a function that can decide whether 
input, represented by a vector of numbers, belongs to some specific class or not). This 
may be attributed to the fact that a combination of meteorological factors drove the 
fluctuations in soil water content and heat. 

In sharp contrast to SMG, neither BPANN nor NNTS produced ideal results at DOE. 
Soil water and heating processes and climatic factors generated a weak correlation, 
especially in the upper soil depths from 10 to 50 cm. A possible explanation may be an 
interaction of size and frequency of rainfall; namely, rainfall at DOE was frequent and 
small, or infrequent and extreme (Zhao and Liu 2010), with the majority (82% of total) 
of events with rain amounts of <5 mm. This configuration indicated that two distinct 
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rainfall patterns occurred at DOE, which could not be simulated by a single model. 
Furthermore, during a drought period at DOE, and in general in arid regions, nocturnal 
“hydraulic lift” by deep-rooted plants may disrupt soil water dynamics and heat distri-
bution in the upper, drier, soil depths (Dawson 1993; Horton and Hart 1998). To obtain 
a superior simulation performance, rainfall exhibiting two distinct patterns may need to 
be separated into types, and the types may need separate simulations; further, including 
the process of hydraulic lift as an input variable at DOE is likely to optimize simulation 
results. 

Interestingly, neither of the two best models, BPANN or NNTS, could depict the lowest 
water content (<14%) of the deepest soil (about 160 cm) at SMG when analyzed at the level 
of individual depths. This indicated that the ANN (BPANN, NNTS) could not accurately 
track the delayed reaction of the deep soil to a long-term drought, a phenomenon observed 
in this study as well as in previous literature (Elshorbagy and Parasuraman 2008; Latt and 
Wittenberg 2014). Soil water content at depth may be affected by other processes in 
addition to climate factors, including the rate of water infiltration, and the presence of 
bedrock and frozen soil. Water-arrival time in deep soil layers is delayed compared to 
surface soils, and water is consumed during infiltration. In addition, bedrock or another 
water-resistant layer can stop the downward movement of soil moisture. For example, fro-
zen soil reallocates heat and concurrently changes both the direction of water movement 
and the form of water. These factors may affect water-content forecasting in extremely 
dry conditions (Latt and Wittenberg 2014). These results suggest that studies of soil water 
content and temperature in arid regions should include measurements of water transfer in 
the downward as well as upward directions. 

The best forecasting of soil moisture in the surface layer at DOE was obtained with 
DRP ¼ 2.02 (BPANN), or the B category, indicating that none of the algorithms can accu-
rately predict soil moisture at 10 cm, and that the response relationships between surface 
soil moisture and meteorological factors were complex, weak, and nonlinear at DOE; this 
was similar to the results of soil temperature simulation near the ground surface in Adana 
City, Turkey (Bilgili 2010). This indicates that in assessments of agricultural irrigation 
systems in arid areas, soil water content between 20 and 40 cm depth rather than at the 
surface needs to be used as the quantitative criterion. According to Maheswaran and Khosa 
(2012), wavelet forms that have variable (compact or wider) subset of the data series can 
exhibit a better performance in time series, such as short memory with short-duration 
transient or long-term features. A wavelet is a wave-like oscillation with amplitude that 
begins and ends at zero. 

The results for temperature of surface soil at SMG, for which four algorithms performed 
well (DRP ≥ 3, in Table 4), indicated that the response relationship between surface soil 
temperature (20 cm depth) and meteorological factors can be expressed by a linear function 
at least to some extent (Bilgili 2010). This was in contrast to soil water content, which 
for the surface (PLS), and the subsurface (SMR), was represented poorly, and the linear 
function failed to capture the physical processes in the soil subsurface. In stark contrast 
to this phenomenon, BPANN and NNTS performed increasingly better with depth of 
the soil profile, indicating that the algorithm was fully suitable to the specific physical 
processes. These results suggested that ANNs were preferable for the forecasting of soil 
heating processes (Gao et al. 2008; Bilgili 2010), and that ANNs can be used as one of 
the simulation methods for temperate areas, including the oasis–desert transition zones. 
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Comparing model performance at the two study sites, the DRP in SMG was much higher 
both for soil moisture and soil temperature than that in DOE. This resulted from vast 
differences in the range and mean values of soil moisture and temperature at the two sites 
(Table 1); the mean soil moisture at DOE (3.68%) was far below that at SMG (18.16%), and 
the range of soil moisture showed the same relative properties (9.55 vs. 32.68%). These 
results indicated that a strong fluctuation in soil moisture existed at SMG, translating to 
a powerful response relationship between climatic factors and soil moisture; specifically, 
the higher the amount of precipitation, the stronger the correlation. This allowed us to 
capture more easily the changes in soil moisture with meteorological data. The amplitude 
of soil temperature at SMG (26.08°C) fluctuated less than that at DOE (35.55°C). This 
suggested that the structure of the system was more complex, and that the ecosystem 
was more stable at SMG than at DOE. When solar radiation penetrates the atmosphere 
to the ground surface, it is dissipated in the clouds (via absorption and/or backscatter), 
by ground vegetation, and by the earth’s surface (soils with different moisture contents 
have different absorption capacities and albedo). Furthermore, more data were available 
for SMG (680 days) than for DOE (349 days) so that modeling for SMG had sufficient 
training before model validation; large input datasets are one of the necessary conditions 
of ANNs for satisfactory forecasting (Haykin 1999; Jain and Kumar 2007). 

Conclusion 

To improve the performance of soil moisture and heat simulations for different soil depths 
at two low-moisture sites, SMG and DOE, we evaluated four mathematical algorithms, 
including BPANN, NNTS, and two linear statistical techniques (PLS and SMR). Evaluation 
of validation results for soil moisture against known records showed that the best- 
performing method was BPANN. This indicates that stochastic models can play an 
important role in estimating hydrological processes, in water resources management and 
planning, and in the restoration of degraded ecosystems in arid regions. 

Semi-arid mountain grassland and DOE had divergent climatic patterns, and algorithm 
estimation gave two different results; this shows that simulation for two different sites 
should correspond to the specific climatic patterns. We conclude that forecasting of future 
soil moisture and/or soil temperature is possible with the use of conventional and easily 
obtainable meteorological factors without any comprehensive data requirements. This 
finding is especially valuable in agricultural applications such as irrigation routines and 
management with limited resources. 

To maximize revenue or optimize investing in data sets, data-driven algorithms are the 
candidate schemes for achieving reliable forecasts in arid regions. Our results revealed that 
BPANN models forecasted soil water and heat transfer processes well, following a correct 
training application with meteorological and fractional soil moisture and temperature data 
(a small subset of data). BPANN can be either linear or nonlinear, and the results can provide 
useful real-time forecasting and/or irrigation management with limited data resources. Future 
investigations should be conducted to build more accurate forecasting models for arid regions. 
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