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Summary

Extensive studies have been carried out to investigate the decomposition of biochar. Biochar properties, soil
characteristics and incubation conditions are considered key factors that control the rate of biochar decomposition.
However, the relative contributions of these factors to its decomposition remain unknown. Approximately 812
individual measurements of the rate of biochar decomposition were collected from 23 studies involving 13C or
14C isotope techniques to evaluate the effects of incubation conditions, soil characteristics and biochar properties
on its decomposition with a boosted regression tree (BRT) model. The BRT model accounted for 95% of the
variation in biochar decomposition. Incubation conditions, soil characteristics and biochar properties accounted
for 41, 31 and 28% of variation in the rate of biochar decomposition, respectively. The most important single
predictor of biochar decomposition was incubation time (contributing 33% to the rate), followed by soil carbon:
nitrogen (C:N) ratio (9%), pyrolysis time (9%), soil N content (8%) and biochar C content (7%). The rate of
decomposition of biochar decreased with time for incubation times less than 1 year. Soil with a large C content
and a small C:N ratio resulted in a large rate of biochar decomposition. Type of feedstock and biochar N content
had little or no effect on biochar decomposition. Our results provide further insight into the factors that affect
biochar decomposition and quantify the relative contributions of these factors to it.

Highlights

• We studied the dominant factors that control biochar decomposition with BRT modelling.
• We quantified relative contributions of incubation conditions, soil characteristics and biochar properties to

biochar decomposition.
• Rate of biochar decomposition explained by incubation conditions (41%), soil characteristics (31%) and

biochar properties (28%).
• The most important predictor of biochar decomposition was incubation time.

Introduction

Biochar is the charred residue of the incomplete combustion of plant
materials and fossil fuels, and can comprise up to 5–45% of global
soil organic carbon (SOC) (Bird et al., 2015; Santín et al., 2016).
In recent years, biochar has been extensively investigated because
of its importance in the terrestrial carbon (C) cycle. It contains very
condensed polycyclic aromatic structures that can resist degradation
and persist in soil for decades to centuries (Bird et al., 2015).

Correspondence: W. D. Zhang and S. L. Wang. Email: wdzhang@iae.ac.cn;Q1
slwang@iae.ac.cn.
Received 29 January 2017; revised version accepted 17 November 2017

Therefore, adding biochar to soil is a promising strategy for
offsetting the release of greenhouse gases to the atmosphere and for
enhancing soil C sequestration (Sagrilo et al., 2015; Santín et al.,
2016).

Although biochar is generally considered chemically and bio-
logically recalcitrant, it is not completely inert and can be par-
tially degraded by biotic and abiotic mechanisms (Kuzyakov et al.,
2009; Santos et al., 2012). Published studies on biochar mineraliza-
tion have indicated that biochar decomposition varies widely (e.g.
from 0.22% day−1 (Herath et al., 2015) to 0.0006% day−1 (Whit-
man et al., 2014)). This considerable variation can be explained by
several factors. The decomposition of biochar is determined mainly

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

© 2017 British Society of Soil Science 1

http://orcid.org/0000-0001-6153-3992


2 L. Chao et al.

by its properties (Keith et al., 2011; Luo et al., 2011), soil char-
acteristics (Santos et al., 2012; Fang et al., 2014a) and incubationQ5

time (Kuzyakov et al., 2009; Wang et al., 2015). However, the rela-
tive contributions of these factors to biochar decomposition and the
relation between these controlling factors and biochar decomposi-
tion are unclear.

Research on biochar properties has suggested that production
conditions and feedstock source can strongly influence biochar
decomposition (Singh et al., 2012; Fang et al., 2014a). Higher
pyrolytic temperatures usually produce more aromatic C and less
labile fractions, which is likely to result in greater physicochemical
recalcitrance than in biochar produced at lower temperatures (Keith
et al., 2011; Luo et al., 2011; Fang et al., 2015; Sagrilo et al.,
2015). Various biochar-derived feedstock materials exhibit different
chemical properties that affect decomposability (Lehmann et al.,
2011). For example, the rate of decomposition of wood-derived
biochars with a large aromatic C content is less than that of
manure-derived biochars (Crombie et al., 2015; Wang et al., 2015).
Biochar N content and C:N ratio can also be affected by different
pyrolytic temperatures and feedstock type. For example, high
temperatures are associated with a large C:N ratio (Luo et al., 2011;
Sagrilo et al., 2015). However, the relations among the biochar
N content, C:N ratio and biochar decomposition remain largely
unexplored.

Although the effect of soil characteristics on biochar decom-
position has been extensively investigated, the effect of changes
in soil conditions on biochar decomposition has yet to be fully
described. Cross & Sohi (2011) found that the rates of decompo-
sition of biochar were faster in SOC-poor soil than in SOC-rich
soil. However, Fang et al. (2015) presented the opposite results,
that is, the rate of decomposition of biochar increased in soil with
a large SOC content. This inconsistency is probably because the
effects of SOC content on biochar decomposition cannot be distin-
guished from other confounding soil properties, such as N content,
C:N ratio and texture (Fang et al., 2014a). Therefore, the effect of
SOC on biochar decomposition should be investigated further. Soil
N and C:N ratio might also affect decomposition by influencing the
efficiency of microbial C use (Riggs & Hobbie, 2016). Veen et al.
(2015) reported that the decomposition of plant litter decreased as
soil N content and the C:N ratio increased; however, their effect on
biochar decomposition is poorly understood.

Experimental conditions, such as incubation time, incubation
temperature and water content, are often considered key regula-
tors of biochar decomposition. Wang et al. (2015) carried out a
meta-analysis of 21 studies on biochar stability in soil and sug-
gested that biochar decomposition decreases markedly with incuba-
tion time, which might be related to decreases in the labile biochar C
fraction with prolonged incubation time. The rate of biochar decom-
position increases as incubation temperature increases (Zimmer-
mann et al., 2012; Fang et al., 2014b), which is probably because of
increased microbial co-metabolism with increasing incubation tem-
perature (Fang et al., 2015). Nguyen & Lehmann (2009) observed
that biochar degradation was significantly larger under unsatu-
rated and alternating saturated–unsaturated conditions than under

constant saturation. Nevertheless, the relation between biochar
decomposition and water content remains unclear. Therefore, our
understanding of its decomposition in soils with different water
contents needs to be improved. Biochar decomposition can also be
affected by the addition of nutrients, such as glucose, nitrogen or
plant residues. They have been reported to increase (Hamer et al.,
2004; Kuzyakov et al., 2009), decrease (Liang et al., 2010) or have
no effect on its decomposition (Santos et al., 2012; Maestrini et al.,
2014). Apparently, the direction and extent of the effects of nutrient
addition appear difficult to predict.

Most individual studies have been carried out under various
incubation conditions and have used a limited number of types of
soil and biochar (Sagrilo et al., 2015). Therefore, researchers find
it difficult to present robust conclusions on the nature of changes in
biochar decomposition within a wide range of biochar properties,
soil characteristics and incubation conditions. Consequently, the
effects of these factors on its rates of decomposition require
comprehensive analysis so that individual contributions of these
factors can be determined.

A boosted regression tree (BRT) is a powerful method of mod-
elling that combines the strengths of regression trees and boosting
algorithms (Elith et al., 2008; Zhang et al., 2015). Compared with
a conventional regression model, the BRT model has several advan-
tages that make it useful for evaluating the relation between predic-
tors and ecological progress (Jorda et al., 2015; Zhang et al., 2015).
First, BRTs can handle different types of predictor variables and
missing data in predictors. Second, BRTs can fit complex nonlinear
relations and handle the interactions of predictors by the hierarchi-
cal structure of a tree. Third, data transformation or elimination of
outliers is not required in BRTs, and the relative importance of each
predictor to the model can also be estimated. Ecologists have used
BRT models to elucidate the variation in other ecological processes.
For example, our previous work demonstrated that the BRT model
accounted for 32.3% of the variation in the effect of soil fauna on
plant litter decomposition (Zhang et al., 2015). Jorda et al. (2015)
developed a BRT model that explained 36 and 15% of the variation
in near-saturated hydraulic and saturated hydraulic conductivity,
respectively.

This study evaluates the effects of biochar properties, soil charac-
teristics and incubation conditions on biochar decomposition. It also
describes the quantitative relation between rates of biochar decom-
position and these factors, and the relative importance of biochar
properties, soil characteristics and incubation conditions.

Materials and methods

Data collection

We carried out a systematic search of the Web of Science and
Google Scholar databases to identify biochar decomposition data
in the literature. The search terms were ‘biochar’, ‘black carbon’,
‘pyrogenic carbon’, ‘PyOM’, ‘char’ and ‘charcoal’. A total of
812 observations taken from 23 studies were selected (S1). The Q6

selection criteria were as follows: (i) biochar decomposition should
be studied by isotopic techniques (13C- or 14C-labelling) to separate
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Effects of controlling factors on biochar decomposition 3

Figure 1 Boosted regression tree (BRT) model indicating the relative contribution (%) of variables to the rate of biochar decomposition. Black and grey bars
show data from the BRT model with and without monotonic constraints. Variables are as follows: In-Ti, incubation time; WC, water content; AR, addition rate;
In-Te, incubation temperature; NA, nutrient addition; Soil C:N; SOC, soil organic carbon; soil pH; soil N; ecosystem, ecosystem type; soil tex, soil texture;
Py-Ti, pyrolysis time; biochar C; Py-Te, pyrolysis temperature; biochar N; biochar C:N; feedstock.

biochar-derived CO2 and CO2 derived from other C sources (e.g.
native soil organic matter or plant residues) and (ii) at least one of
the selected explanatory variables was determined. The digitizer in
OriginPro 9.0 was used to extract data points from figures in these
published studies.

We used a BRT model with three latent variables, that is, biochar
properties, soil characteristics and incubation conditions, to deter-
mine their effects on the rates of biochar decomposition. The
latent variables were reflected by selected variables (i.e. indica-
tors). Biochar properties, including pyrolysis time and tempera-
ture, biochar C and N contents, C:N ratio, pH and feedstock, were
selected as potential indicators. For soil characteristics, we selected
six indicators: soil C and N contents, C:N ratio, pH, ecosystem
type and soil texture. For incubation conditions, we selected five
indicators: incubation time, temperature and water content, rates of
biochar and nutrient addition.

Data analysis

The data for decomposition dynamics of biochar were reported
as emitted CO2-C derived from biochar (mg C g−1 biochar-C) or
biochar mineralization (% of addition) in most of the studies;
therefore, we recalculated the rates of biochar decomposition and
represented them as percent per day (% day−1).

The BRT models were implemented with the packages gbm and
dismo in the statistical software R (version 2.15.2; R DevelopmentQ7

Core Team, 2009) (Elith et al., 2008). In the BRT analysis, we chose
Gaussian as the error structure for the loss function because of the
characteristics of our response variable (Zhang et al., 2015). Model
performance was also controlled by learning rate, tree complexity,
bagging fraction and cross-validation (De’ath, 2007; Elith et al.,

2008; Soykan et al., 2014). Learning rate determined the contribu-
tion of each tree to the growing model. Tree complexity refers to
the number of nodes in a tree and controlled the level of interac-
tions in BRT. Bagging fraction set the proportion of data used for
model building at each step. Cross-validation specified the number
of times that the data should be divided randomly for model fitting
and validation. To select the optimum model, the parameter setting
was based on the empirical rules recommended for BRT modelling.
Twenty-seven models were fitted with the following parameter set-
tings: learning rates of 0.01, 0.005 and 0.001, bag fractions of 0.6,
0.5 and 0.4, ten-, eight- and five-fold cross-validations and a tree
complexity of 4 to account for potentially large numbers of inter-
actions between predictor variables. By trial-and-error we found
that the best BRT model had a cross-validation deviance (predic-
tive deviance) of 0.011 (± one standard error= 0.002) from a learn-
ing rate of 0.01, bag fraction of 0.6 and five-fold cross-validation.
To reduce the risk of over-fitting, we also applied monotonic con-
straints to biochar properties, soil characteristics and incubation
conditions, resulting in a refitted model with a cross-validation
deviance of 0.015 (± one standard error= 0.002). The results are
similar (Figures 1–4); therefore, we interpreted the model with
monotonic constraints. Moreover, we also assessed the extent of
interaction effects between predictors. However, the strength of the
effect for each possible pair of predictors was weaker (Table 1).
Details of the interaction effects between predictors are provided
in Table 1 and Figures S1–S4 in File S1.

Boosted regression trees can provide the relative effect of the
predictor variables in the model (Friedman, 2001). The relative
effect of each predictor is based on the number of times a
variable is used in the model for splitting, weighted by the squared
improvement to the model as a result of each split, and averaged
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Figure 2 Partial dependence plots showing the effect of the changes in incubation conditions on the rate of biochar decomposition by considering the following
variables used in the boosted regression tree (BRT) model: (a) incubation time, (b) water content, (c) addition rate, (d) incubation temperature and (e) nutrient
addition. The fitted functions reveal the relations between the rate of biochar decomposition and each variable. The responses of the rate of biochar decomposition
to monotonic constraints are shown in black and those without the constraints are shown in grey.

over the entire model (Soykan et al., 2014; Zhang et al., 2015). To
interpret the fitted functions better, we calculated the relative effect
of all predictor variables to quantify the contribution of predictors to
the rate of biochar decomposition. Then, the relative effect of each
variable was scaled such that the sum adds to 100. Variables with a
larger percentage corresponded to a stronger relative effect on the
decomposition rate of biochar.

Results

Overall, the mean rate of biochar decomposition was 0.011% day−1

(95% confidence interval (CI)=−0.0018 to 0.0239%). The BRT
model accounted for 95% of the variation in the rate of decompo-
sition. Incubation conditions, soil characteristics and biochar prop-
erties accounted for 41, 31 and 28% of that variation, respectively
(Figure 1 inset).

Effect of incubation conditions

Water content, rate of addition of biochar, incubation time and
temperature, and nutrient addition affected biochar decomposition
by 4, 3, 33, 1 and 0%, respectively (Figure 1).

The rate of decomposition decreased markedly with prolonged
incubation time (Figure 2a). The average rates of decomposition
rapidly decreased from 0.6433 to 0.0024% day−1 within 1 year,
and then remained at a low rate. As incubation temperature
and water content increased, the rate of decomposition increased
(Figure 2b,d). Analysis with the BRT model revealed that the rate
of decomposition was negatively related to that of biochar addition.
The rate of decomposition decreased slowly and then became
constant at rates of biochar addition >0.089 g g−1 (Figure 2c).
However, the addition of nutrients did not affect the rate of biochar
decomposition (Figure 2e).

Effect of soil characteristics

The C:N ratio, N content, pH, soil C, ecosystem type and soil texture
affected the decomposition of biochar in the following proportions:
9, 8, 6, 4, 2 and 2%, respectively (Figure 1).

Biochar decomposition decreased considerably with increasing
C:N ratio up to 9; at C:N ratios >9 there was little difference in
the rate of decomposition (Figure 3a). The rate also decreased as
soil N content increased (Figure 3b). In contrast, the rate increased
as SOC content increased (Figure 3d) and also increased markedly
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Figure 3 Partial dependence plots illustrating the effect of soil characteristics on the rate of decomposition of biochar using each variable in the boosted
regression tree (BRT) model: (a) soil C:N ratio, (b) soil N content, (c) soil pH, (d) soil organic carbon (SOC) content, (e) ecosystem type and (f) soil texture.
The responses of the rate of biochar decomposition to monotonic constraints on these are shown in black and those without constraints are shown in grey.

with increasing pH from 5 (0.029% day−1) to 6 (0.108% day−1) and
was relatively stable at pH higher than 6 (Figure 3c). Ecosystem
and soil texture had no effect on the rate of biochar decomposition
(Figure 3e,f).

Effect of biochar properties

Pyrolysis time, biochar C content, pyrolysis temperature, pH, C:N
ratio, N content and feedstock source affected biochar decomposi-
tion by relatively small amounts: 9, 7, 4, 3, 2, 1 and 2%, respectively
(Figure 1).

The rate of decomposition of biochar markedly decreased with
pyrolysis time and then became constant when pyrolysis time
exceeded 2 h (Figure 4a). Similarly, the rate of decomposition
decreased (seemingly stepwise) with increasing temperature up to
600∘C and thereafter was relatively stable (Figure 4c). The rates
of decomposition were negatively correlated with biochar C and
N contents, and its pH (Figure 4b,d,f). The rate of decomposition
increased with increasing C:N ratio up to 40 and was relatively
stable above that (Figure 4e). The feedstock used for biochar
production appeared to have little effect on its rate of decomposition
(Figure 4g).

Discussion

To our knowledge, this study is the first to use a BRT model to
quantify the relative contributions of incubation conditions, soil
characteristics and biochar properties to the rates of decomposition
of biochar. Our results show that such a model presently accounts
for 95% of the variation in biochar decomposition. The proportion
of variation accounted for by the BRT model applied to biochar
decomposition exceeds that reported by Zhang et al. (2015) and
Jorda et al. (2015) for other ecosystem processes. This result indi-
cates that, after many years of research, our current knowledge of
the factors that control the complex nature of biochar decomposition
is considerable.

Effects of incubation conditions on the decomposition rate
of biochar

Our finding that incubation time was the most important predictor of
biochar decomposition (contributing 33% to the rate) is consistent
with that described by Wang et al. (2015), who found that incuba-
tion time was a relevant factor that affected rates of biochar degrada-
tion in soil. The sharp decrease in rate of decomposition of biochar
within 1 year (Figure 2a) indicates that biochar contains an easily
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Figure 4 Partial dependence plots describing the effect of biochar properties on the rate of biochar decomposition using each variable in the boosted regression
tree (BRT) model: (a) pyrolysis time, (b) biochar C content, (c) pyrolysis temperature, (d) biochar pH, (e) biochar N content, (f) biochar C:N ratio and (g)
feedstock. The responses of biochar decomposition rate to monotonic constraints on these properties are shown in black and those without constraints are
shown in grey.

decomposable component and that the rate of biochar decomposi-
tion stabilizes after this readily available C is exhausted (Crombie
et al., 2015; Sagrilo et al., 2015). Although only 16% of the data
used here represented incubation times >1 year, our analysis shows
that rates of biochar decomposition appeared stable after 1 year.
Other incubation studies, such as the decomposition of plant litter,Q9

lasted >1 year, which was a much shorter time period than those on
biochar decomposition. This observation suggests that researchers
have exerted considerable efforts to explore biochar decomposition
(Bird et al., 2015; Santín et al., 2016).

Rates of biochar decomposition are faster in mild and wet condi-
tions than in cold or dry environments (Nguyen & Lehmann, 2009;

Fang et al., 2014b), which is similar to rates of decomposition of
plant litter. In contrast to the decay of litter, our results indicate that
temperature appeared to play a minor role in biochar decomposi-
tion. According to enzyme kinetic theory, chemically recalcitrant
C (e.g. biochar) requires greater activation energy for decomposi-
tion and is therefore more sensitive to temperature (Q10) than labile
C (e.g. plant litter) (Davidson & Janssens, 2006; Nguyen et al.,
2010). Previous research has reported that the Q10 values of plant
litter and soil organic matter were approximately 3 and 2, respec-
tively (Hyvönen et al., 2005; Salinas et al., 2011). However, our
results showed that rates of biochar decomposition were estimated
to increase by about 43% for about a 20∘C rise in temperature (the
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Table 1 A ranked list of the extent of the interaction effects between predictors Q8

Rank Variable 1 (index) Variable 1 (names) Variable 2 (index) Variable 2 (names) Interaction effects

1 6 Biochar C 1 Incubation time 0.75
2 18 Pyrolysis time 1 Incubation time 0.18
3 10 Soil organic carbon 1 Incubation time 0.14
4 16 Feedstock 1 Incubation time 0.11
5 5 Addition rate 1 Incubation time 0.10
6 15 Ecosystem type 13 Soil pH 0.06
7 13 Soil pH 1 Incubation time 0.05
8 12 Soil C:N 1 Incubation time 0.05
9 17 Pyrolysis temperature 13 Soil pH 0.04

10 11 Soil N 3 Water content 0.04
11 13 Soil pH 10 Soil organic carbon 0.03
12 17 Pyrolysis temperature 1 Incubation time 0.02
13 13 Soil pH 3 Water content 0.02
14 10 Soil organic carbon 3 Water content 0.02
15 9 Biochar pH 1 Incubation time 0.02
16 8 Biochar C:N 6 Biochar C 0.02

incubation temperature range from 19∘C to 40∘C included in this
study), rather than the similar four-fold increase expected, accord-
ing to the Q10 value of soil organic matter. This indicated that rates
of biochar decomposition were much less sensitive than those of
plant litter or soil organic matter in response to incubation tem-
perature. Fang et al. (2014b) also reported that biochar decompo-
sition is less sensitive to changes in incubation temperature than
is native carbon. The marked difference in temperature sensitivity
between biochar and plant litter indicates that mechanisms control-
ling its temperature sensitivity may be different and require further
research.

According to stoichiometric theory, nutrients in litter, such as
N and P contents, are generally the main limiting factors of
decomposition (Manzoni et al., 2010). The addition of N can
stimulate the decomposition of plant litter, especially poor-quality
litter, such as pine needles, by modifying its C:N ratio (Sterner &
Elser, 2002). However, the negligible effect of nutrient addition
on biochar decomposition in this study suggests that biochar
decomposition might primarily be limited by readily available C
rather than nutrients.

Effects of soil characteristics on the rate of biochar
decomposition

The physicochemical characteristics of soil play important roles
in determining rates of biochar decomposition. Overall, the rate
is larger in soil with large SOC contents and small C:N ratios
than in soil with small SOC contents and large C:N ratios. In
contrast to previous findings (Cross & Sohi, 2011; Sagrilo et al.,
2015), our results demonstrated that soil with large SOC contents
had enhanced biochar decomposition. This inconsistency might
be attributed to the following reasons. First, soil with large SOC
contents and small C:N ratios might support more biomass and
microbial activity than soil with small SOC contents and large

C:N ratios (Keith et al., 2011; Fang et al., 2014a). Second, biochar
decomposition did not respond to the addition of nutrients, which
suggests that readily available C might be a limiting factor in
biochar decomposition. Thus, soil with larger SOC content might
compensate for the C-limiting effects. Third, individual studies
have used few soil types. Therefore, establishing a reliable relation
between biochar decomposition and SOC is difficult. Soil N
content had only a weak effect on the rate of decomposition of
biochar, probably because biochar decomposition was not limited
by nutrients (Figure 2e).

Effects of biochar properties on its rate of decomposition

The seven biochar properties incorporated in our BRT model
accounted for 28% of the variation in decomposition, indicating
that these properties are almost as significant as those of the
accompanying soil.

We anticipated that feedstock source would markedly affect the
properties of biochar and consequently influence its decomposi-
tion. However, our results showed that feedstock only slightly
affected the rates of biochar decomposition, although the phys-
ical state and properties of biochar might vary considerably for
different feedstock types, such as leaf, wood and manure-derived
biochar. This phenomenon might result from the conditions under
which the biochar was produced, which have important effects in
determining biochar properties (Lehmann et al., 2011; Crombie
et al., 2015). In general, the concentration of C in plant residues
is less than 50% (Hättenschwiler et al., 2008); however, the C con-
tent markedly increases from pyrolytic processes, the aromatic C
content increases concomitantly and relative recalcitrance against
microbial decomposition occurs as a consequence (Luo et al., 2011;
Fang et al., 2015).

The slight effects of biochar N concentration and C:N ratio on
its decomposition are in contrast with litter decomposition, where
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these factors usually have a strong influence (Zhang et al., 2008).
The decomposition of plant litter is often positively correlated with
N content and inversely related to the C:N ratio (Zhang et al.,
2008). However, much of the N within biochar is unavailable to
soil microorganisms (Biederman & Harpole, 2013) and biochar
decomposition might be inhibited by a large proportion of aromatic
C and the degree of aromatic condensation rather than by biochar
N or C:N ratio. Previous studies have also suggested that aromatic
alkene-C structures play important roles in influencing biochar
decomposition (Santos et al., 2012; Fang et al., 2015), and the
degree of aromaticity increases with temperature and the duration
of pyrolysis (Luo et al., 2011; Maestrini et al., 2014). Thus, further
research is required to determine the importance of the degree of
aromaticity in biochar decomposition.

Conclusions

This study enabled us to determine the relative contributions of
incubation conditions, soil characteristics and biochar properties on
the rate of biochar decomposition. Our BRT model accounted for
95% of the variation in biochar decomposition. Incubation time was
the strongest controlling factor in the rate of biochar decomposition,
and although soil characteristics and biochar properties accounted
for less of the variation, they were significant and almost equal in
determining the decomposition.
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Supplementary references. List of references for the 23 published
studies used in the current BRT analysis.
Table S1. A ranked list of the extent of the interaction effects
between predictors.
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interaction effect of incubation time and biochar C content on the
rate of biochar decomposition.
Figure S2. Three-dimensional partial dependence plots indicating
the interaction effect of incubation time and pyrolysis time on the
rate of biochar decomposition.
Figure S3. Three-dimensional partial dependence plots illustrating
the interaction effect of incubation time and SOC on the rate of
biochar decomposition.
Figure S4. Three-dimensional partial dependence plots illustrating
the interaction effect of incubation time and rate of addition of
biochar on that of its decomposition.
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