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Abstract Coarse root biomass (CRB) is an important store of
carbon (C) and forest residue for renewable energy, but is
often overlooked due to the lack of a simple and effective
way to estimate its magnitude. In this study, we developed
allometric equations for three functional groups using data
from 133 tree samples, with a diameter at breast height
(DBH) ranging from 2.6 to 52.0 cm. The functional groups
included evergreen coniferous (Pinus massoniana), deciduous
broad-leaved (Alniphyllum fortunei, Choerospondias
axillaris, Liquidambar formosana and Quercus fabri) and ev-
ergreen broad-leaved (Castanopsis carlesii, Cyclobalanopsis
glauca, Litsea coreana and Schima superba) species.
Allometric equations that related CRB to plot inventory data
(e.g. DBH or tree height (H)) and their combinations signifi-
cantly fitted (P < 0.0001) for the functional groups and all tree
species. The equations using DBH or DBH-H as predictor

variables were the best fit (R2 ≥ 0.90) and produced good
predictions with little bias (less than 21%) for local sites and
at regional scales. Allometric equations related to easily ob-
tained remote sensing data (i.e. crown width (CW) and H)
were also significantly fitted (P < 0.0001, R2 ≥ 0.76), and
predictions were close to the observed CRB, despite a high
bias (larger than 98.0%). In conclusion, the use of these equa-
tions to estimate CRB is essential to the harvest process and
helps to formulate new policies for managing the feedstock
supply to bioenergy production in subtropical forests.
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Introduction

Ever-increasing levels of environmental pollution and energy
demands have stimulated global research into alternative en-
ergy resources [1]. Forest biomass is widely recognized as an
important energy source with the potential to reduce green-
house gas emissions and to minimize environmental pollution
[2]. Forest ecosystems are often seen as potentially enormous
carbon (C) sinks and plant biomass providers [3]. Forest bio-
mass includes all parts of the tree, not only the stem but also
bark, branches, needles or leaves and even roots. As a non-
negligible part of forest biomass, tree roots account for ap-
proximately 30% of the total tree biomass, of which most is
held in coarse roots [4]. Previous studies have concluded that
coarse roots could be a significant fuelwood resource to sup-
ply emerging fuelwood chains [3]. This process has proven to
be technically feasible and economically profitable [5, 6]. One
idea that has received considerable attention is the large-scale
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removal of coarse root biomass (CRB) from forests. However,
the removal of CRB leads to a loss of soil organic C and
nutrients [7]. Assessment of nutrient losses due to root har-
vesting requires accurate CRB estimates [3]. In addition, in-
creases in the use of CRB for energy also need to occur in
ways that maintain productivity and environmental sustain-
ability to ensure long-term production. Thus, to ensure the
sustainable use of CRB in subtropical forests, there is a need
to quantify the actual amount of CRB available.

Coarse roots are difficult to quantify in the field because of
the large size of the portion hidden in soil and the cost and
labour requirements needed to harvest the whole root system.
Many investigators have used indirect techniques to estimate
their biomass. An allometric equation is the most commonly
used indirect method to estimate CRB [8, 9]. The equations
usually relate the CRB to some easily measured variables,
such as the diameter at breast (DBH), tree height (H) or a
combination of such parameters [4, 10–12]. Species-specific
allometric equations are preferred, but this is impractical for
forests composed of diverse tree species. Allometric equations
for functional groups (e.g. angiosperm or gymnosperm, ever-
green or deciduous), which include functional traits (e.g.
wood density), are alternative approaches [13]. Nevertheless,
it is necessary to test the effects of tree species before func-
tional groups are aggregated.

The increasing need to quantify CRB has prompted the
development and compilation of allometric equations for bo-
real [4, 14], temperate [15, 16] and tropical forests [17–19].
However, CRB has not been estimated in subtropical forests
because only a few equations are available. To the best of our
knowledge, only a few studies have developed allometric
equations for multiple species at local [11, 20] and regional
scales [13]. Moreover, it has not yet been confirmed that these
equations could be applied to other sites or species. Xiang
et al. [21] developed general allometric equations for Pinus
massoniana roots based on 197 samples across 20 sites in
subtropical forests. Despite this work, the high diversity of
tree species in subtropical forests [22] makes it impractical
to develop general allometric equations for each species
[23]. Therefore, accurate and simple methods to estimate
CRB are required in subtropical forests.

Together with forest inventory data, allometric equations
have been used to estimate forest biomass. Remote sensing
has gradually become the primary tool used to monitor forest
structure and estimate stand biomass C stocks [24]. The high
resolution of light detection and ranging (LiDAR) remote sens-
ing allows the estimation of three-dimensional forest structure
and offers an effective measurement of tree crown width (CW)
and H in forests [25, 26]. Although the LiDAR technique can
rapidly and accurately obtain CWandH data in forests [27], the
effective use of these data to estimate forest biomass, and in
particular belowground CRB, is challenging due to the paucity
of allometric equations using CWandH as predictive variables.

China has the fifth largest forest resource in the
world, and its forest area accounts for 5% of the global
total [28]. Together with the other large forested
counties, China has the opportunity to develop forest-
based energy solutions to mitigate C emissions [29].
Subtropical forests in China hold a tremendous potential
to provide the feedstock necessary to meet emerging
renewable energy goals. Accurate estimates of CRB will
improve the accuracy of forest C storage estimates and
its potential for bioenergy. China has detailed permanent
plot data collected by each 5-year national forest re-
source inventory. The plot data includes tree DBH and
H [11]. In addition, the application of remote sensing
enables forest biomass to be determined. The use of this
forest resource inventory data and remote sensing tech-
niques to estimate CRB in subtropical forests makes it
imperative to develop CRB allometric equations and test
their applications. Hence, we selected nine common tree
species that represent three functional groups (evergreen
coniferous, deciduous broad-leaved and evergreen broad-
leaved species) to develop CRB allometric equations.
The objectives of this study were to (1) test whether tree
species affect the allometric relationship within a given
functional group; (2) develop and extend functional
group allometric equations to predict CRB using forest
inventory data at local and regional scales; and (3) as-
sess the usefulness of remote sensing imagery data to
estimate CRB in subtropical forests.

Materials and Methods

Study Site Description

The study was conducted at two sites in southern China. One
site was located at the Paiyashan Forest State Farm (latitude
26°24′N-26°35′N, longitude 109°27′E-109°38′E) in Jingzhou
County, Hunan Province. The other site was located at the
Huaijiang Ecosystem Research Station (24°43′N-24°45′N,
108°18′E-108°20′E), Huanjiang County, Guangxi Zhuang
Autonomous Region. Both sites are characterized by a sub-
tropical humid monsoon climate (Fig. 1).

The Paiyashan Forest State Farm is characterized by a
low and medium mountainous topography, with elevation
ranging from 330 to 1075 m above mean sea level. The
average annual rainfall is 1250 mm, and the average an-
nual temperature is 16.7 °C, ranging from an average of
5.7 °C during the coolest month (January) to 26.8 °C
during the warmest month (July). The soil parent material
is purple sand shale, and the soil type is designated as a
red soil at altitudes below 600 m and yellow soil at alti-
tudes higher than 600 m. The soil is classified as Alliti-
Udic Ferrosols in Chinese Soil Taxonomy, which
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corresponds to Acrisol in the World Reference Base for
Soil Resources [30]. Forest types on the farm include
Cunninghamia lanceolata plantations and secondary for-
ests dominated by different tree species [31].

At Huanjiang Station, the topography is a typical karst
fengcong depression, with elevation ranging from 272 to
674 m above mean sea level. Average annual temperature is
19.9 °C, ranging from an average of 10.1 °C during the coolest
month (January) to 27.9 °C during the warmest month (July).
The mean annual precipitation is 1389 mm, mostly occurring
between April and August. The geology can be described as
soluble and porous limestone and dolomite, and the soil type
is mainly rendzina, which is equivalent to Luvisols in the
World Reference Base for Soil Resources [30]. The zonal
vegetation in the station is subtropical mixed evergreen and
deciduous broadleaf forest.

Tree Sampling and Root Biomass Measurement

Following the procedure described byXiang et al. [31], 133 tree
samples of nine common species were selected at two sites
(Tables 1 and 2). Tree samples selected for each species repre-
sent the size range in the forests investigated, and trees with
severe defects were excluded. Among the 133 trees, the size
range was from 1.8 to 52.0 cm in DBH, from 2.0 to 30.2 m in H
and from 0.9 to 16.5 m in CW (Tables 1 and 2). The nine tree
species were categorized into three functional groups according
to morphological and phenological traits in subtropical forests,
including evergreen coniferous (P. massoniana), deciduous

broad-leaved (Alniphyllum fortunei, Choerospondias axillaris,
Liquidambar formosana and Quercus fabri) and evergreen
broad-leaved (Castanopsis carlesii, Cyclobalanopsis glauca,
Litsea coreana and Schima superba) species.

The sampled trees were destructively harvested in October
2014 using a chainsaw, and stems were felled at the ground
surface. The excavation method was performed to determine
CRB, with an excavation cylinder having an extended radius
of 1.5 m distance from the tree stump and a depth down to
1.5 m. The root stump and as many lateral roots as possible
within the cylinder were collected. The root stump was man-
ually excavated at a soil depth of 1.5 m, and the resulting roots
were washed using water and then weighed in the field using a
weighing beam to obtain their fresh weight. For CRB, only
roots with a diameter >2 mm were considered [9], and all
CRB weights were expressed on an oven-dried and ash-free
basis. To determine the dry weight of the coarse root, root
samples were collected, placed in cloth bags and transported
to the laboratory. The root samples were oven-dried at 65 °C
to a constant weight. The average moisture content was cal-
culated and used to determine the CRB dry weight.

To correct for coarse roots that were unharvested, we first
measured the average diameter of all lateral roots at each
breakage point for individual trees. Based on the measured
diameter, we then harvested all lateral roots of this size from
every tree to determine the percentage of roots growing be-
yond a distance of 1.5 m from the stump. From these samples,
the ratios of root lengths and fresh mass of 1.5 m long roots to
entire roots were determined to calculate the CRB.

Fig. 1 Location of the study sites
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Model Formulation and Statistical Analysis

We used a power function and an exponential function to
develop the allometric relationship of CRB against DBH
[32]. After a comparison of the performance of the two func-
tions, we found that the power function had a higher coeffi-
cient of determination (R2) as well as a lower root mean square
error (RMSE), Furnival index (FI) and Akaike information
criterion (AIC) (Table S1). Thus, we used the power function
to develop the allometric equation in this study.

We performed an analysis of covariance (ANCOVA), using
species as a categorical factor and DBH as a continuous co-
variate, to determine whether tree species affected the

allometric relationship within a given functional group. If
there was no significant effect, we aggregated the tree species
data to develop the allometric equations of each functional
group. Otherwise, we developed species-specific allometric
equations and functional group equations based on the allo-
metric similarities of the species. The difference was signifi-
cant (P < 0.05), and pairwise comparisons were tested by a
Tukey honestly significant difference test.

We used the data from 92 trees to develop allometric equa-
tions (Table 1) and the data from the remaining 41 trees to
validate the equations (Table 2). For each functional group,
approximately one third of the trees were randomly selected
for the validation, whereas the data from the remaining trees

Table 1 Number (N) and ranges in diameter at breast height (DBH), height (H) and crown width (CW) of the sample trees that were used to build the
equations (92 trees)

Site Functional group Tree species Number DBH (cm) H (m) CW (m)

Mean Range Mean Range Mean Range

Hunan Evergreen coniferous Pinus massoniana 7 32.1 5.9–52.0 17.0 8.5–20.0 5.9 1.2–8.8

Deciduous broad-leaved Alniphyllum fortunei 8 22.6 3.8–39.5 15.4 6.4–21.5 6.0 1.6–9.8

Deciduous broad-leaved Choerospondias axillaris 5 15.5 7.8–24.5 13.7 11.9–15.9 4.6 1.8–7.2

Deciduous broad-leaved Liquidambar formosana 7 31.1 10.0–47.2 23.5 12.9–30.2 7.9 5.1–10.1

Evergreen broad-leaved Schima superba 8 15.8 3.0–28.5 12.5 6.0–18.2 5.5 1.5–9.0

Evergreen broad-leaved Litsea coreana 10 23.0 2.6–45.5 13.2 3.5–21.5 7.1 0.9–16.5

Evergreen broad-leaved Cyclobalanopsis glauca 8 29.4 6.2–50.9 18.5 10.7–22.8 7.9 3.5–12.4

Guangxi Evergreen coniferous Pinus massoniana 10 16.5 1.8–27.2 14.7 2.1–21.8 3.2 1.1–4.8

Deciduous broad-leaved Liquidambar formosana 8 16.2 6.3–24.3 12.5 6.3–21.1 4.8 3.1–6.4

Deciduous broad-leaved Quercus fabri 5 20.5 9.7–35.5 15.1 8.6–21.6 4.4 2.8–7.6

Deciduous broad-leaved Castanopsis carlesii 4 18.3 5.3–32.8 11.0 5.6–17.2 4.0 1.6–5.8

Evergreen broad-leaved Cyclobalanopsis glauca 9 9.4 3.5–16.4 8.9 2.0–13.6 2.7 1.1–4.7

Evergreen broad-leaved Schima superba 3 11.5 7.5–14.0 11.6 10.9–12.3 3.2 1.0–4.8

Table 2 Number (N) and ranges in diameter at breast height (DBH), height (H) and crownwidth (CW) of the sample trees that were used for validation
(41 trees)

Site Functional group Tree species Number DBH (cm) H (m) CW (m)

Mean Range Mean Range Mean Range

Hunan Evergreen coniferous Pinus massoniana 3 19.8 12.2–25.0 17.3 14.9–20.5 5.2 2.5–7.0

Deciduous broad-leaved Alniphyllum fortunei 2 18.9 6.6–31.1 15.1 8.9–21.2 4.7 1.3–8.0

Deciduous broad-leaved Choerospondias axillaris 5 10.4 3.3–18.7 11.0 5.6–13.7 4.0 1.4–8.6

Deciduous broad-leaved Liquidambar formosana 3 18.6 6.9–29.0 17.8 8.0–25.3 6.4 3.2–8.9

Evergreen broad-leaved Schima superba 2 23.4 13.0–33.8 16.6 14.6–18.5 6.0 3.9–8.0

Evergreen broad-leaved Cyclobalanopsis glauca 2 21.1 11.2–31.0 17.1 13.1–21.0 9.2 7.2–11.1

Guangxi Evergreen coniferous Pinus massoniana 6 20.0 2.0–31.7 17.0 2.8–25.3 4.0 1.5–6.3

Deciduous broad-leaved Liquidambar formosana 3 12.3 7.6–19.6 11.8 8.2–17.6 4.6 3.1–6.1

Deciduous broad-leaved Quercus fabri 3 11.9 8.0–14.1 10.8 8.5–15.2 2.9 1.9–4.2

Deciduous broad-leaved Castanopsis carlesii 3 13.7 10.6–18.5 11.2 10.1–12.6 4.4 2.4–5.7

Evergreen broad-leaved Cyclobalanopsis glauca 7 9.4 6.2–12.6 9.1 2.0–11.6 3.1 2.0–5.5

Evergreen broad-leaved Schima superba 2 22.6 8.8–36.5 15.7 10.5–20.8 4.5 2.9–6.1
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was used to fit equations. Natural logarithms were used to
normalize and linearize the data. A correction factor (CF)
was introduced for all allometric equations to correct the sys-
tematic bias [33]. Instead of evaluating all possible forms of
allometric equations using different predictor variables, we
selected the four most common models relating to DBH, H
and their combination [4, 11, 16, 21] to develop allometric
equations for three functional groups and all tree species. In
addition, two regression models were selected to fit equations
relating to CW and H that were easily derived from LiDAR
imagery [24]. The allometric equations are as follows:

ln CRBð Þ ¼ aþ b� ln DBHð Þ ð1Þ
ln CRBð Þ ¼ aþ b� ln Hð Þ ð2Þ
ln CRBð Þ ¼ aþ b� ln DBH2 � H

� � ð3Þ
ln CRBð Þ ¼ aþ b� ln DBHð Þ þ c� ln Hð Þ ð4Þ
ln CRBð Þ ¼ aþ b� ln CWð Þ ð5Þ
ln CRBð Þ ¼ aþ b� ln Hð Þ þ c� ln CWð Þ ð6Þ

where a, b and c are the fitted parameters, CRB (kg) is the
coarse root biomass, DBH (cm) is the diameter at breast height,
H (cm) is the tree height and CW (m) is the crown width.

For each equation, all parameters were tested for signifi-
cance at P < 0.05. The criteria used to evaluate the perfor-
mance and fitness of the six models were the R2, RMSE, FI
and AIC [34, 35].

Comparison of Allometric Equations with Other
Published Equations

To examine their predictive ability and to compare errors
among the allometric equations developed for each functional
group in this study, we calculated the CRB for three functional
groups using data from 41 tree samples and our allometric
equations relating to DBH, DBH-H and CW-H as well as
allometric equations developed by Li et al. [11] and Lai
et al. [20]. The bias (%) of each equation compared to the
actual CRB was calculated using the following formula:

Bias %ð Þ ¼ 1

N
∑
N

I¼1

Dobs−Dpred

Dobs

� �
� 100 ð7Þ

where Dobs and Dpred represent the observed and predicted
CRB (kg) and N is the number of tree samples. A one-way
analysis of variance (ANOVA) was used to test the differences
in bias among the six equations.

Concurrently, we examined the accuracy of our allometric
equations using DBH as the predictor variable to estimate the
CRB reported by Xiang et al. [21] and Lai et al. [20] for 356
trees in subtropical forests in nine provinces. The data for
these 356 trees is available online in an open-access format,
and their DBH ranged from 1.1 to 56.5 cm. In addition, we

also adopted the average bias method to evaluate the efficien-
cy of equations for four different DBH classes (0–10, 10–20,
20–30 and ≥30 cm). We compared all estimated CRB values
to the observed data using linear regression methods.
Statistical analyses in this study were performed using the
statistical software R 3.3.1.

Results

CRBAllometric Equations Using DBH andH as Predictor
Variables

For deciduous broad-leaved species, no significant species
effects were found in the allometric equations (Table S2),
and we developed functional group equations accordingly.
For evergreen broad-leaved species, tree species significantly
affected (P < 0.05) the relationship between DBH and CRB
(Table S2). However, the pairwise comparison showed that
with exception of L. coreana, there was no significant differ-
ence among the other three tree species (Table S3). Thus, we
developed a species-specific allometric equation for
L. coreana, and the functional group aggregated the other
three evergreen broad-leaved species.

Allometric equations using DBH, H and their combina-
tion as predictor variables significantly fitted (P < 0.0001)
with our data for the three functional groups and all species
(Table 3). The R2 ranged from 0.66 to 0.98 for all equa-
tions. For a given functional group, allometric equations
using DBH as the only predictor variable fitted well with a
high R2 (0.90–0.97) and low RMSE, FI and AIC, whereas
equations using H as the only predictor variable were the
poorest fit with the lowest R2 (0.67–0.68) and had the larg-
est RMSE, FI and AIC (Table 3). Adding H as the second
predictor variable did not improve the fitness of equations
relating to (DBH)2 × H, as R2 decreased and RMSE, FI and
AIC increased compared to DBH equations. When sepa-
rately related to DBH and H, the equations also fitted well
with the data and had similar, or only slightly different, R2,
RMSE, FI and AIC (Table 3).

The allometric equations differed among the three func-
tional groups and all species combined (Fig. 2). At a given
DBH, the values of CRB were the highest for evergreen
broad-leaved species and the lowest for evergreen coniferous
species. Deciduous broad-leaved species and all species com-
bined had intermediate CRB values (Fig. 2).

CRB Allometric Equations Using CWand H as Predictor
Variables

For the three functional groups and all species combined,
allometric equations relating CRB to CW were signifi-
cantly fitted (P < 0.0001), but the goodness of fit was
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relatively poor, with an R2 lower than 0.81 (Table 3).
When allometric equations were related to the combina-
tion of CW and H (model 6), the fitness was improved
and R2 was larger than 0.80, except for deciduous broad-

leaved species (R2 = 0.76). Including H as the second
predictor variable in the equations decreased the RMSE,
FI and AIC for all equations (Table 3).

Accuracy of CRB Prediction and Errors in the Allometric
Equations

The equations relating to DBH (model 1), DBH-H (model 4)
and CW-H (model 6) had better fit, and therefore, we used
these three equations for each functional group and the equa-
tions developed by Li et al. [11] and Lai et al. [20] to compare
their predictive ability. A comparison between the predicted
and observed CRB of 41 trees indicated that models 1 and 4
had the best predictive ability, with a bias lower than 21%
(Fig. 3 and Table 4). The CRB predicted by model 6 was
overestimated compared to the observed CRB for evergreen
coniferous, deciduous broad-leaved species and evergreen
broad-leaved species (Fig. 3). The biases of model 6 were
98.8–172.1% (Table 4). The equations of Li et al. [11] poorly
predicted CRB for our data, with an overestimation for ever-
green coniferous species and an underestimation for decidu-
ous and evergreen broad-leaved species (Fig. 3), whereas the
equations of Lai et al. [20] predicted CRB well, except for
evergreen coniferous species. The biases of the equations of
Li et al. [11] and Lai et al. [20] were higher for evergreen
coniferous species (73.2 and 108.9%), but were lower for
the other two functional groups (less than 46.6%) (Table 4).

Table 3 Allometric equations for estimations of coarse root biomass (CRB)

Functional group Predictor variables a (Se) b (Se) c (Se) R2 P value RMSE CF FI AIC

Evergreen coniferous DBH −4.44 (0.33) 2.48 (0.11) 0.97 <0.0001 0.35 1.06 2.67 16.90
H −5.03 (1.44) 2.94 (0.53) 0.67 <0.0001 1.21 2.08 9.11 58.68
(DBH)2 × H −5.01 (0.57) 0.92 (0.07) 0.93 <0.0001 0.56 1.17 4.21 32.41
DBH and H −3.70 (0.33) 3.01 (0.19) −0.87 (0.26) 0.98 <0.0001 0.26 1.03 1.97 8.67
CW −0.58 (0.48) 2.67 (0.34) 0.81 <0.0001 0.93 1.54 6.98 49.63
H and CW −3.71 (0.74) 1.55 (0.34) 1.89 (0.28) 0.92 <0.0001 0.58 1.18 4.39 35.86

Deciduous broad-leaved DBH −4.17 (0.46) 2.54 (0.16) 0.90 <0.0001 0.51 1.14 3.99 53.76
H −5.35 (1.08) 3.18 (0.39) 0.68 <0.0001 0.91 1.51 7.04 91.19
(DBH)2 × H −4.93 (0.55) 0.96 (0.06) 0.88 <0.0001 0.55 1.16 4.29 58.54
DBH and H −4.13 (0.64) 2.56 (0.32) −0.04 (0.46) 0.90 <0.0001 0.51 1.14 3.99 55.76
CW −0.96 (0.63) 2.55 (0.37) 0.61 <0.0001 1.00 1.65 7.77 97.71
H and CW −4.57 (0.99) 2.10 (0.49) 1.29 (0.42) 0.76 <0.0001 0.79 1.37 6.13 84.07

Evergreen broad-leaved DBH −4.11 (0.28) 2.64 (0.10) 0.96 <0.0001 0.43 1.10 3.35 41.08
H −4.94 (1.02) 3.16 (0.41) 0.67 <0.0001 1.19 2.03 9.19 105.72
(DBH)2 × H −4.91 (0.37) 1.00 (0.05) 0.94 <0.0001 0.51 1.14 3.97 51.90
DBH and H −4.19 (0.38) 2.59 (0.19) 0.09 (0.27) 0.96 <0.0001 0.43 1.10 3.34 42.96
CW −0.75 (0.42) 2.53 (0.27) 0.74 <0.0001 1.04 1.72 8.09 97.50
H and CW −3.18 (0.89) 1.48 (0.49) 1.68 (0.37) 0.80 <0.0001 0.91 1.51 7.06 90.82

All species DBH −4.02 (0.24) 2.50 (0.08) 0.92 <0.0001 0.53 1.15 4.19 132.70
H −4.83 (0.64) 3.01 (0.24) 0.66 <0.0001 1.09 1.81 8.62 250.86
(DBH)2 × H −4.70 (0.30) 0.94 (0.04) 0.89 <0.0001 0.61 1.20 4.79 154.55
DBH and H −3.82 (0.32) 2.64 (0.16) −0.23 (0.23) 0.92 <0.0001 0.53 1.15 4.17 133.73
CW −0.70 (0.28) 2.49 (0.18) 0.71 <0.0001 1.00 1.65 7.89 236.45
H and CW −3.56 (0.51) 1.61 (0.25) 1.n (0.20) 0.81 <0.0001 0.81 1.39 6.42 204.61

a, b and c are allometric coefficients with standard errors in parentheses

R2 coefficient of determination, RMSE root mean square error, FI Furnival index, AIC Akaike information criterion

Fig. 2 Allometric relationships between diameter at breast height (DBH)
and coarse root biomass (CRB) (model 1) together with the fitted curves
for all species (in purple) and three functional groups consisting of ever-
green coniferous species (in red), deciduous broad-leaved species (in
blue) and evergreen broad-leaved species (in green)
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Lai et al. [20] only incorporated DBH and CRB data, and
therefore, we used model 1 to predict CRB. Model 1 poorly
predicted CRB for evergreen coniferous species, whereas the
prediction for evergreen broad-leaved species was relatively
good (Fig. 4). When used to estimate CRB for different DBH
classes, the evergreen coniferous species equation had a rela-
tively low average bias for the 0–10-cm (6.68%) and 10–20-cm
(8.72%) classes, but with relatively higher stand deviations
(Fig. 5) than for the 20–30- and ≥30-cm classes. For evergreen
broad-leaved species, DBH classes of 0–10 and 20–30 cm had
relatively low average bias and stand deviations (Fig. 5).

Discussion

Functional Group Allometric Equations Based on Forest
Plot Data

An accurate estimation of tree CRB in forests is critically
important for effective predictions of stand production and
energy biomass in forests used by local communities [36].
From an economic perspective, there is also a need for a better
quantification of belowground biomass [37]. However, there
have been few allometric biomass equations developed

Fig. 3 Relationship between observed coarse root biomass and predicted
coarse root biomass estimated by models 1, 4 and 6, and allometric
equations developed in previous studies by Li et al. [11] and Lai et al.

[20]. The full line is a fitted curve, while the dashed line indicates the 1:1
relationship. The Li et al. [11] and Lai et al. [20] equations are all species
combined models

Table 4 Average bias (%) of coarse root biomass (CRB) estimated for
three functional groups using our allometric equations that relate to DBH
(model 1), DBH−H (model 4) and CW-H (model 6) as well as the equations

of Li et al. [11] [CRB = 1.16 × exp. (−3.47 + 2.31 ln(DBH))] and Lai et al.
[20] [CRB = 1.15 × 0.031(DBH)2.38]

Functional groups Tree number Average bias (%) P value

Model 1 Model 4 Model 6 Li et al. [11] Lai et al. [20]

Evergreen coniferous 9 −1.83*a −19.09a 99.97b 73.18b 108.88b <0.001

Deciduous broad-leaved 16 19.97 18.81 98.78 38.91 46.63 0.255

Evergreen broad-leaved 16 19.14*ab 20.61ab 172.10a 1.74b 20.16ab <0.05

Differences in average bias denoted with asterisks are significant at P = 0.05

DBH diameter at breast height, H height, CW crown width
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specifically for coarse roots in subtropical forests. Previous
studies have usually aggregated the data at the functional
group or all species levels, ignoring the difference in the allo-
metric relationships between tree species [13, 23, 24, 31].
Even though the aggregated equations are convenient for bio-
mass estimates, in particular for situations where there are no
tree species records, these often lead to large uncertainties.
Therefore, it is important to test whether tree species signifi-
cantly affects the allometric relationships before developing
equations for a functional group. Excluding L. coreana, no
significant effect was found within a given functional group
in this study. This result implies that developing a functional
group allometric equation is practical.

In this study, allometric equations for three functional
groups were developed. The results showed that functional
group allometric equations could be used to quantify CRB
for biomass energy production with acceptable accuracy.
Allometric equations were significantly fitted (P < 0.0001)
for three functional groups, and the predictor variables could
explain more than 66% of the variability of CRB (Table 3).
Among the allometric equations, we found that the equations

using DBH or DBH-H as predictor variables were the best fit
(R2 ≥ 0.90) with a high R2 and low RMSE, FI and AIC, and
their prediction biases for the trees in our study sites were less
than 21% (Tables 3 and 4). The results indicate that DBH and
DBH-H were good predictors of CRB.

It was found that the functional group influenced the CRB
allometric equations. For a given tree diameter, the equations
for all tree species combined either overestimated or
underestimated CRB for each functional group (Fig. 2).
Moreover, the CRB predictions of 41 trees using the equations
of Li et al. [11] and Lai et al. [20] for all tree species resulted in
an overestimation of CRB for evergreen coniferous species
and an underestimation of CRB for other functional groups.
These results confirmed that applying all species allometric
equations developed at one site to other sites can introduce
large errors in prediction, in particular for root biomass [4, 11].
In contrast, allometric equations using DBH alone or DBH
and H separately for functional groups not only had good fits
but also had low prediction biases (<21%) (Table 4). Our

Fig. 5 Bias (with rectangles representing mean values and bars
representing standard deviations) for different diameter at breast height
(DBH) classes (0–10, 10–20, 20–30 and ≥30 cm) when applyingmodel 1
to the data from Xiang et al. [21] and Lai et al. [20]. The number of
evergreen coniferous species and evergreen broad-leaved species was
255 and 101, respectively

Fig. 4 Coarse root biomass (CRB) estimation accuracy when applying
model 1 to the data from Xiang et al. [21] and Lai et al. [20]. The two
figures show predicted vs observed values for evergreen coniferous
(n = 255) and evergreen broad-leaved (n = 101). For the two figures,
the dashed line corresponds to a 1:1 relationship, whereas the solid line
is a regression spline fit to the data points to highlight how predictive
accuracy varies with tree size. The bias of each set of predictions is
reported in the lower right-hand corner
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results were also in agreement with a previous study, which
showed that the inclusion of a functional group might improve
tree biomass estimates [13]. According to Niiyama et al. [17],
the accuracy and precision of root biomass estimates are in-
fluenced by the quantity of data used for developing the allo-
metric equations. Due to the high cost and labour require-
ments needed to excavate whole root systems, the number of
sampled trees and its sizes were often limited despite the crit-
ical need for reducing uncertainty in parameter estimates [38].
Functional group models allow for increases in sample num-
ber and sample tree sizes to improve allometric equations and
greatly simplify the procedures involved in making CRB es-
timates. In conclusion, these results support the notion that
functional group classification is a trade-off that considers tree
architectural traits and simplifies the procedures to develop
allometric equations for more accurate CRB estimates.

Forest biomass energy is still in the initial stages of develop-
ment in subtropical China [39]. Although several studies have
been conducted to estimate forest CRB, the performance and
predictive ability of allometric equations are still unclear in
China. To validate the predictive ability of allometric equations
developed in our study, we applied model 1 to the data from
Xiang et al. [21] and Lai et al. [20]. The result showed that our
allometric equations underestimated CRB, but the bias was
2.4% for evergreen coniferous species and 3.4% for evergreen
broad-leaved species. This confirms that the equations devel-
oped using data from a variety of sites for functional group
models could be extended to other subtropical sites with accept-
able accuracy [38]. Previous studies have found that tree bio-
mass allometry changes with tree size [18, 40, 41]. The size
range of sampled trees in our study approximates to the sizes
used by Lai et al. [20], and our equations showed a good degree
of fitness for explaining the variability in CRB [42]. The lower
the average bias, the better the estimates obtained from the
equations [43]. The bias in this study indicated that the ability
of each functional group’s allometric equation to estimate CRB
differed with DBH classes (Fig. 5). The equations produced
relatively good CRB estimations for the 20–30- and ≥30-cm
DBH classes of evergreen coniferous species and for the 0–
10- and 20–30-cm DBH classes of evergreen broad-leaved spe-
cies. In summary, the allometric equations using DBH as well as
DBH and H as predictor variables developed for functional
groups in this study could be used to estimate CRB in subtrop-
ical forests. In districts where forest plot data are available, forest
managers and local policymakers can adopt the allometric equa-
tions we developed to predict CRB, providing a guide to site
selection for long-term CRB supplies.

The Basis for Estimating CRB Using Remote Sensing
Imagery Data

Recent progress in LiDAR technology and its application in
forestry has provided a promising approach for estimating

forest biomass. LiDAR technology can directly obtain tree
CW and H in forests, which are important tree characteristics
used in many stand growth and yield models [44]. Previous
studies have found that aboveground biomass is closely relat-
ed to CWandH at local and regional scales [24, 45]. However,
whether this strong relationship still holds for belowground
CRB remains to be determined.

The third objective of the study was to demonstrate the
possibility of using remote sensing to address the problem of
estimating coarse root energy at large scales. The CRB equa-
tions significantly fitted with the data from CWand H for three
functional groups and could explain 76 to 92% of the variabil-
ity in CRB estimates (Table 3). These results indicate that the
CRB is strongly shaped by CW and H in subtropical forests
because the tree architecture reflected by CWand H determines
resource capture and biomass [46, 47]. In addition, the accu-
mulation of belowground biomass is facilitated by the photo-
synthetic capacity of the tree aboveground canopy [48].

Although the allometric equations using CWand H as pre-
dictor variables provided a good degree of fitness, the predic-
tion bias was larger than 98.8%. Several factors may explain
this result. First, the tree architecture is variable due to the
competitive environment [24, 49]. Even for a fixed tree diam-
eter, H and CW may differ. Wang et al. [50] reported that
competition intensity had a negative effect on biomass com-
ponents. Consequently, competition for the aboveground and
belowground environment should be considered in further
studies when using CW and H to estimate CRB. Second, the
error in CWmeasurements should be considered. The error in
CWmeasurements may be larger than the corresponding error
for DBH and H [51, 52], which could lead to a large bias in
CRB estimates. Our study explored the potential for the ap-
plication of remote sensing imagery data to estimate CRB in
subtropical forests. The significant fit of the CWand H data in
CRB equations is of great interest for the future application of
remote sensing technology in monitoring forest structure and
stand biomass C dynamics, but more data are required to fully
fit and test the equations.

Conclusions

CRB in the subtropical forests of China has considerable po-
tential as a renewable bioenergy source to mitigate the risk of
environmental pollution and global climate change. The CRB
energy resource could make a considerable contribution to
future energy demand in subtropical areas and reduce the de-
pendency on fossil fuels. The accurate projection and success-
ful utilization of CRB for energy production requires a simple
and efficient method to assess the magnitude of the root bio-
mass. This study has shown that functional group allometric
equations can be used to quantify CRB as biomass sources
and for bioenergy production with acceptable accuracy in
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subtropical forests. Allometric equations using the DBH and
DBH-H combination showed good fitness and provided accu-
rate CRB predictions with little bias. Concurrently, although
there was a large bias, allometric equations using CWand H as
predictor variables significantly fitted the CRB data from three
functional groups. In summary, the methods developed in this
study will help forest managers better understand the limits of
CRB harvesting and determine the best approaches to harvest-
ing biomass in a sustainable way.
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