湘西南石漠化地区灌丛植物叶N、P化学计量特征

景宜然'邓湘雯'² 魏 辉' 李艳琼' 邓东华 刘豪健 项文化'²

(1 中南林业科技大学生命科学与技术学院,长沙 410018; 2 南方林业生态应用技术国家工程实验室,长沙 410018; 3 广西喀斯特植物保育与恢复生态学重点实验室/广西壮族自治区中国科学院广西植物研究所,广西桂林 541006; 4 邵阳县林业局,湖南邵阳 422100)

摘 要 以湘西南石漠化地区灌丛植物叶片为研究对象,分析了不同功能群植物以及 3 种不同石漠化程度(轻度、中度、重度)下植物叶片 $N_{\rm N}P$ 化学计量特征.结果表明:湘西南石漠化地区常见植物叶片平均 N 含量为 12.89 g • kg^{-1} , P 含量为 1.19 g • kg^{-1} , N/P 值为 11.24 ,大部分植物生长受到 N 的限制.不同生活型之间植物叶片 N 含量为落叶灌木>常绿灌木>一年生草本>多年生草本,P 含量与 N/P 值为落叶灌木>多年生草本,不同科植物之间叶片 $N_{\rm N}P$ 含量和 N/P 值差异显著,禾本科植物叶片 $N_{\rm N}P$ 含量最低,与其他科植物共同受 N 限制;豆科植物叶片 $N_{\rm N}P$ 含量和 N/P 值最高,主要受 P 限制,双子叶植物与 P 化均离于非固氮植物,P 含量差异不显著,各样地中植物叶片 P 含量之间的相关性显著,P 化均离于非固氮植物,P 含量差异不显著,各样地中植物叶片 P 含量之间的相关性显著,P 化均离子,以P 含量以及 P 化均离子,以P 值与 P 含量以及 P 化均值差异尔显著。

关键词 石漠化; 植物功能群; 叶 N、P 化学计量

Leaf nitrogen and phosphorus stoichiometry of shrubland plants in the rocky desertification area of Southwestern Hunan , China. JING Yi-ran¹ , DENG Xiang-wen¹²² , WEI Hui¹ , LI Yan-qiong¹³ , DENG Dong-hua⁴ , LIU Hao-jian⁴ , XIANG Wen-hua¹² (¹College of Life Science and Technology , Central South University of Forestry and Technology , Changsha 410018 , China; ²Na-tional Engineering Laboratory for Applied Technology of Forestry & Ecology in South China , Chang-sha 410018 , China; ³Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain , Guangxi Institute of Botany/Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences , Guilin 541006 , Guangxi , China; ⁴Shaoyang Bureau of Forestry , Shaoyang 422100 , Hunan , China) .

Abstract: In this paper , we took the leaves of shrubland plants in rocky desertification area in Southwestern Hunan as the research object to analyze the nitrogen (N) and phosphorus (P) stoichiometry characteristics for different functional groups and different grades of rocky desertification , *i.e.* , light rocky desertification (LRD) , moderate rocky desertification (MRD) and intense rocky desertification (IRD) . The results showed that the average contents of N and P were 12.89 and 1.19 g • kg $^{-1}$, respectively , and N/P was 11.24 in common shrubland plants in the study area , which indicated that the growth of most plants were mainly limited by N. The content of N was declined in order of deciduous shrubs > evergreen shrubs > annual herbs > perennial herbs. The content of P and N/P were higher in deciduous shrubs than in perennial herbs. Significant differences were found among the main families of plants in terms of the contents of N , P and N/P in the study sites. The plants of Gramineae had the lowest contents of N and P , and their growth was mostly restricted by N , while Leguminosae had the highest content of N and N/P , and their productivity was majorly controlled by P. The contents of N and P in the leaves were significantly higher in dicotyledon plants

本文由国家林业局林业科学技术推广项目([2014]52)和国家林业局荒漠化(石漠化)定位监测项目(20150618)资助 This work was supported by the Forestry Science and Technology Promotion Project of State Forestry Administration of China([2014]52), and the Desertification (Rocky Desertification) Monitoring Project of State Forestry Administration of China (20150618).

2016-07-06 Received, 2016-11-25 Accepted.

^{*} 通讯作者 Corresponding author. E-mail: dxwfree@ 126.com

and C3 plants than in monocotyledon plants and C4 plants , but the N/P was not significantly different between these two plant categories. The nitrogen-fixing plants had higher content of N and N/P than the non-nitrogen-fixing plants , but the P content was not significantly different between these two plant groups. There were significant correlations between contents of N and P , N/P and N in all study plots. No significant correlation was found between N/P and P content in the examined rocky desertification sites , except for that in MRD. There were no significant differences of the contents of N , P and N/P under different grades of rocky desertification.

Key words: rocky desertification; plant functional group; leaf N and P stoichiometry.

N、P 是植物生长必需的矿质营养元素。在植物生长和各种生理机制调节方面发挥着重要作用 $^{[1-2]}$. 在陆地生态系统中 植物体内的 N、P 含量很容易受到温度、水分、光、土壤养分、 CO_2 等非生物因素以及遗传特性、生长阶段、种群分类等生物因素的影响 $^{[3]}$ 质之 结合植物的生物学特性分析植物体内 N、P 化学计量特征可分析植物群落的功能差异及其对环境的适应性 $^{[4]}$; 并且随着生态化学计量学利用越来越广 $^{[5]}$ 植物叶 N/P 值已被用来指示植物生长受 N 或 P 的限制情况.因此,植物叶片的 N/P 值也被认为是环境判断因子,甚至可以作为判断土壤养分供给状况的指标 $^{[6-7]}$.

目前,关于植物化学计量方面的研究多集中于 湿地、森林生态系统[8-11] 对于荒漠化植物的研究多 集中于北方或干旱地区[12-14].有研究表明,热带及 亚热带地区常绿阔叶林的乔木和灌木植物叶 N、P 含量略低于我国陆地植物叶片 N、P 的平均值 ,且随 着群落演替植物叶 N、P 含量逐渐变化 受养分限制 情况也发生变化[15].温带干旱荒漠区的植物叶 N、P 含量明显高于中国植物平均水平,不同生活型植物 的资源利用对策因植被类型及地理分布的不同存在 较大变异[16]; 在退化草场区植物具有较低的 N、P 含量 随着退化程度变化而波动 且在不同的退化阶 段受到 N、P 限制情况不同[17].在沙化地区植物叶 N、P 含量低于其他地区 ,受土壤养分含量的影响显 著 且在不同生长阶段受到养分限制情况不同[18]. 石漠化是亚热带碳酸盐地区气候因子与人为干扰下 产生的基岩大面积裸露、土壤严重侵蚀、营养元素大 量流失的现象 灌丛植被是该地区植被的主要组成 部分 是脆弱生态系统恢复过程中重要的过渡植被 类型 在维持荒漠化地区生态系统的生物多样性、生 态服务功能及稳定方面具有重要作用[19].关于石漠 化地区植物尤其灌丛植被叶 N、P 含量水平 ,受到养 分限制情况以及不同石漠化程度之间植物 N、P 化 学计量特征的研究较少.研究石漠化地区灌丛植被 N、P 含量 以及不同功能群植物之间 N、P 化学计量 特征的差异、各物种适应贫瘠地区的养分胁迫的能力 对于合理地选择植被恢复物种、建立健康的生态系统具有重要意义.

本研究从湘西南 3 种石漠化程度样地中选取常见灌木、草本植物 ,分析植物叶片 N、P 化学计量特征 ,研究不同石漠化程度植物叶片之间的养分差异 ,探讨不同功能群植物叶片 N、P 化学计量特征的差异 ,揭示不同植物对石漠化环境的适应能力 ,为石漠化地区植被恢复与经营管理提供指导.

1 研究地区与研究方法

1.1 研究区概况

研究区位于湖南省邵阳县郦家坪镇($27^{\circ}0^{\circ}N^{\circ}$)、 $111^{\circ}36^{\circ}E$),是湘西南典型的石漠化地区,地处衡邵盆地西南边缘向山地过渡地带,试验地海拔 $400^{\circ}585$ m,处于岩溶丘陵地带,气候属中亚热带季风湿润气候,年平均气温 16.9 °C。昼夜温差大,最高气温41.0 °C。最低气温-10.1 °C,年无霜期 288 d,年降水量 1399 mm,年均蒸发量 1180 mm. 土壤类型主要是黑色石灰土和黄色石灰土,乔木较少,地下水位低,地下水蓄量少,对环境的调节和承受能力差.

研究区内灌丛植被平均覆盖率为 65%.灌木植物主要有檵木(Loropetalum chinense)、锥栗(Castanea henryi)、糯米条(Abelia chinensis)、牡荆(Vitex negundo)、六月雪(Serissa japonica)、火棘(Pyracantha fortuneana)、木蓝(Indigofera tinctoria)等,草本植物主要有野菊(Dendranthema indicum)、芒(Miscanthus sinensis)、青蒿(Artemisia carvifolia)等^[20].

1.2 试验设计

2015 年 10 月,在 3 个具有代表性的不同石漠化程度地段分别设置 1 hm²样地,依据基岩裸露度、植被类型、植被综合盖度、土层厚度 4 个主要因子,根据各指标评分之和划分石漠化等级,石漠化程度等级划分评定标准参照国家林业局行业标准(LY/T 1840—2009) [21].记录样地经纬度、海拔、地貌、植被类型、基岩裸露度以及干扰程度等情况(表 1) [20].

表 1 样地基本情况

Table 1 General status of plots

样地 Plot	石漠化程度分级得分 Score of rocky desertification	坡向 Slop	坡度 Grade (°)	海拔 Altitude (m)	基岩裸露率 Bedrock exposed rate (%)	植被盖度 Vegetation coverage (%)	干扰状况 Disturbance status
LRD	34(≤45)	南 South	20	500	35	80	人为干扰轻 少量放牧
MRD	48(46~60)	东北 Northeast	18	500	57	75	弃耕地 弃耕后无干扰
IRD	67(61~75)	西南 Southwest	17	480	73	40	人为干扰轻 少量放牧

LRD: 轻度石漠化 Light rocky desertification; MRD: 中度石漠化 Moderate rocky desertification; IRD: 重度石漠化 Intense rocky desertification. 下同The same below. 括号中为分级标准 Data in brackets were the classification standards.

在3种不同石漠化程度样地的上、中、下3个坡位各设置3个2 m×2 m 样方,共计27个样方.调查样方中出现的常见灌木和草本植物,每个样方中每种灌木选择3~5 株、草本植物选择8~10 株(丛),采集完全展开的叶片,将同一样方中同种植物叶混合为一个样品.在27个样方中采集到123个植物叶样品,共41种植物,分属于22 科(表2),其中草本植物7科18种,灌木16科23种(含树高<2 m 或地径<3 cm的乔木).

将样品用蒸馏水洗净,于 105 °C 下杀青 15 min,在 80 °C 下烘干至恒量,将植物烘干样粉碎,过 100 目筛,装袋备用. \mathbb{N} 含量采用半微量凯氏定氮法测定。 \mathbb{P} 含量采用钼锑抗比色法测定.

1.3 数据处理

将调查的植物种按 5 个分类标准分为不同的功能群(表 3):1)生活型:一年生草本、多年生草本、常绿灌木、落叶灌木;2)系统发育类型:单子叶植物和双子叶植物;3)科:主要为禾本科、菊科、豆科、蔷薇科、忍冬科;4)光合途径: C_3 植物和 C_4 植物;5)固氮与非固氮植物.

采用 SPSS 16.0 软件对不同功能群以及不同石 漠化程度样地中植物叶片 $N \times P$ 含量和 N/P 值进行 单因素方差分析(one-way ANOVA) 与 LSD 多重比较 对植物叶片 $N \times P$ 含量以及 N/P 值进行 Pearson 相关性分析($\alpha = 0.05$) ,用 Nonparametric Test/One-Sample K-S对数据进行K-S检验.采用Excel 2010

表 2 湘西南石漠化地区典型植物

Table 2 Typical species of rocky desertification in Southwestern Hunan

植物种 Species	科 Family	生活型 Life form	植物种 Species	科 Family	生活型 Life form
白茅 Imperata cylindrica	 禾本科	多年生草本	菝葜 Smilax china	菝葜科	常绿灌木
芒 Miscanthus sinensis	禾本科	多年生草本	算盘子 Glochidion puberum	大戟科	落叶灌木
马唐 Digitaria sanguinalis	禾本科	一年生草本	白背叶 Mallotus apelta	大戟科	落叶灌木
黄背草 Themeda japonica	禾本科	多年生草本	冬青 Ilex chinensis	冬青科	常绿灌木
金色狗尾草 Setaria glauca	禾本科	一年生草本	枸骨 Ilex cornuta	冬青科	常绿灌木
麦冬 Ophiopogon japonicus	百合科	多年生草本	木蓝 Indigofera tinctoria	豆科	落叶灌木
一年蓬 Erigeron annuus	菊科	一年或二年生草本	胡枝子 Lespedeza bicolor	豆科	落叶灌木
青蒿 Artemisia carvifolia	菊科	一年生草本	扁担杆 Grewia biloba	椴树科	落叶灌木
野菊 Dendranthema indicum	菊科	多年生草本	胡颓子 Elaeagnus pungens	胡颓子科	常绿灌木
白舌紫菀 Aster baccharoides	菊科	多年生草本	檵木 Loropetalum chinense	金缕梅科	常绿灌木
苣荬菜 Sonchus arvensis	菊科	多年生草本	枫香 Liquidambar formosana	金缕梅科	落叶乔木
华泽兰 Eupatorium chinense	菊科	多年生草本	锥栗 Castanea henryi	売斗科	落叶乔木
败酱 Patrinia scabiosaefolia	败酱科	多年生草本	板栗 Castanea mollissima	売斗科	落叶乔木
紫花地丁 Viola philippica	堇菜科	多年生草本	牡荆 Vitex negundo	马鞭草科	落叶灌木
三角叶堇菜 Viola triangulifolia	堇菜科	多年生草本	盐肤木 Rhus chinensis	漆树科	落叶灌木
地榆 Sanguisorba officinalis	蔷薇科	多年生草本	六月雪 Serissa japonica	茜草科	常绿灌木
风轮菜 Clinopodium chinense	唇形科	多年生草本	火棘 Pyracantha fortuneana	蔷薇科	常绿灌木
荔枝草 Salvia plebeia	唇形科	一年或二年生草本	小果蔷薇 Rosa cymosa	蔷薇科	落叶灌木
藤构 Broussonetia kaempferi	桑科	落叶灌木	金樱子 Rosa laevigata	蔷薇科	常绿灌木
华山矾 Symplocos chinensis	山矾科	常绿灌木	糯米条 Abelia chinensis	忍冬科	落叶灌木
响叶杨 Populus adenopoda	杨柳科	落叶乔木			

表 3 不同功能群植物叶片 N、P 含量以及 N/P 值

Table 3 Contents of N, P and N/P of plant leaves in different functional groups

项目 Item	功能群	n	氮含量 Norman	磷含量	 氮磷比 N/P
item	Plant functional group		N content $(g \cdot kg^{-1})$	P content $(g \cdot kg^{-1})$	N/P
	单子叶植物 Monocotyledon plant	23	8.96±4.88a	0.78±0.33a	11.43±2.84a
Phylogenetic development	双子叶植物 Dicotyledon plant	100	$13.80 \pm 4.70 \mathrm{b}$	$1.29 \pm 0.33 \mathrm{b}$	11.20±3.88a
生活型	一年生草本 Annual herb	13	$11.40 \pm 3.84 ab$	$1.20 \pm 0.44 \mathrm{ab}$	$9.97{\pm}2.88\mathrm{ab}$
Life form	多年生草本 Perennial herb	41	$10.16 \pm 4.42a$	$1.03 \pm 0.41a$	10.32±3.41a
	常绿灌木 Evergreen shrub	23	$13.20 \pm 3.39 \mathrm{b}$	$1.22{\pm}0.36\mathrm{ab}$	$11.38 \pm 3.30 ab$
	落叶灌木 Deciduous shrub	46	$15.65 \pm 5.30 c$	$1.32 \pm 0.31 \mathrm{b}$	$12.38 \pm 4.09 \mathrm{b}$
光合途径	C3 植物 C3 plant	78	14.37±4.92a	$1.28 \pm 0.33 a$	11.69±3.76a
Photosynthetic pathway	C4 植物 C4 plant	45	$10.36 \pm 4.34 \mathrm{b}$	$1.04 \pm 0.43 \mathrm{b}$	$10.47 \pm 3.50a$
固氮与非固氮	固氮植物 Nitrogen-fixing plant	9	$24.48 \pm 2.39a$	$1.40 \pm 0.15 a$	17.76±3.11a
Nitrogen-fixing and non-nitrogen-fixing	非固氮植物 Non-nitrogen-fixing plant	114	$11.97 \pm 3.98 \mathrm{b}$	1.17±0.39a	$10.72 \pm 3.23 \mathrm{b}$
科	禾本科 Gramineae	21	6.58±1.98a	$0.68 \pm 0.24 a$	10.14±2.85a
Family	菊科 Compositae	19	13.33 ± 2.56 b	$1.35 \pm 0.33 \mathrm{b}$	10.64±4.24a
	豆科 Leguminosae	8	$24.88 \pm 2.21 c$	$1.40 \pm 0.16 \mathrm{b}$	$18.11 \pm 3.13 \mathrm{b}$
	蔷薇科 Rosaceae	7	$14.51 \pm 2.22b$	$1.50 \pm 0.45 \mathrm{b}$	10.38±3.11a
	忍冬科 Caprifoliaceae	10	11.64±0.84d	$1.24 \pm 0.32 \mathrm{b}$	10.00±2.65a

同列不同字母表示差异显著(P<0.05) Different letters in the same column meant significant difference at 0.05 level.

软件作图.图表中数据为平均值±标准差.

2 结果与分析

2.1 湘西南石漠化地区植物种类以及植物叶 $N \times P$ 含量特征

如表 2 所示 草本植物中禾本科(5种)和菊科(6种)植物种数量占较大比重,分别占总种数的12.2%和14.6%,而灌木中各科物种分布较均衡,其中蔷薇科(4种)物种略多,占总数的9.8%,忍冬科和豆科虽物种数较少,但糯米条和木蓝为该地区的优势种.

如图 1 所示 ,湘西南石漠化地区灌丛植物叶片 N 含量平均值为(12.89 ± 5.09) g • kg⁻¹ ,变化范围为 $4.08\sim28.02$ g • kg⁻¹.其中 25.4%的叶片样本 N 含量

为 $4.08 \sim 10.00~{\rm g} \cdot {\rm kg}^{-1}$,63.9%的叶片 N 含量为 $10.00 \sim 20.00~{\rm g} \cdot {\rm kg}^{-1}$, $20.00 \sim 28.02~{\rm g} \cdot {\rm kg}^{-1}$ 的样本 数量仅占 10.7%.叶片 P 含量平均值为(1.19 ± 0.39) ${\rm g} \cdot {\rm kg}^{-1}$,变化范围为 $0.38 \sim 2.29~{\rm g} \cdot {\rm kg}^{-1}$,其中,81.3%的叶片 P 含量为 $0.38 \sim 1.50~{\rm g} \cdot {\rm kg}^{-1}$, $1.50 \sim 2.00~{\rm g} \cdot {\rm kg}^{-1}$ 的样本数量占 17.1%,仅 1.6%的叶片 P 含量为 $2.00 \sim 2.29~{\rm g} \cdot {\rm kg}^{-1}$.叶片 N/P 平均值为(11.24 ± 3.70),在 $3.85 \sim 24.83$ 之间变化.其中,78.7%的叶片 N/P 值为 $3.85 \sim 14.00$,12.3%的叶片为 $14.00 \sim 16.00$,仅 9.0%的叶片 N/P 值为 $16.00 \sim 24.83$.经 K-S 检验,湘西南石漠化地区植物叶片 N、P 含量与 N/P 值均符合正态分布.

2.2 不同功能群植物叶 N、P 含量及 N/P 值特征 如表 3 所示 按植物的系统发育类型分析 ,双子

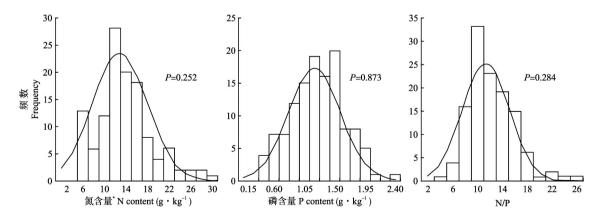


图 1 植物叶片 N、P 含量及 N/P 值频率分布

Fig.1 Frequency distribution of N and P contents and N/P of plant leaves.

^{*} 一个牡荆叶片氮含量数据缺失 One of the data of leaf N content of Vitex negundo was lost.

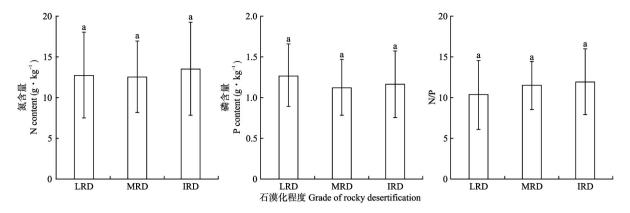


图 2 不同石漠化程度植物叶片 N、P 含量及 N/P 值

Fig.2 N and P contents and N/P of plant leaves in different grades of rocky desertification.

LRD: 轻度石漠化 Light rocky desertification; MRD: 中度石漠化 Moderate rocky desertification; IRD: 重度石漠化 Intense rocky desertification. 不同小写字母表示差异显著(P<0.05) Different small letters meant significant difference at 0.05 level.

叶植物叶片 N、P 含量均高于单子叶植物,而这 2 种 功能群植物叶片 N/P 值差异不显著. 按生活型分 析 落叶灌木与其他三种生活型植物之间叶片 N 含 量差异显著,且落叶灌木>常绿灌木>一年生草本> 多年生草本 而一年生草本植物分别与多年生草本 植物和常绿灌木差异不显著.落叶灌木叶片 P 含量 和 N/P 值均高干多年生草本植物 其余生活型之间 P 含量和 N/P 值差异不显著.按植物不同的光合途 径分析 C3、C4 植物叶片 N、P 和 N/P 值的特征表现 为: C3 植物叶片 N、P 含量均显著高于 C4 植物叶 片, 而 2 种功能群植物叶片的 N/P 值差异不显著.固 氮植物叶片 N 含量以及 N/P 值显著高于非固氮植 物 而 2 种功能群植物叶片 P 含量差异不显著.主要 科植物之间叶片 N 含量差异显著,其中豆科植物叶 片 N 含量显著高于其他科 其次为蔷薇科、菊科、忍 冬科、禾本科植物,菊科与蔷薇科之间差异不显著. 禾本科植物叶片 P 含量显著低于其他科 其余 4 科 植物之间差异不显著.豆科植物叶片 N/P 值显著高 于其他科植物 ,其余科植物 N/P 值均在 10 左右 ,差 异不显著.

表 4 叶片 N、P 含量和 N/P 值的相关系数 Table 4 Correlation coefficients among leaf N, P and N/P

样地	指标	LRD		M	RD	IRD	
Plot	Item	N	P	N	P	N	P
LRD	P	0.497 * *	-	-	-	-	-
	N/P	0.674 * *	-0.247	-	-	-	-
MRD	P	-	-	0.688 * *	-	-	-
	N/P	-	-	0.442 * *	-0.304*	-	-
IRD	P	-	-	-	-	0.501 * *	-
	N/P	-	-	-	-	0.679 * *	-0.276

^{*} *P*<0.05; * **P*<0.01.

2.3 不同石漠化程度植物叶片 N、P 及 N/P 关系

如图 2 所示 3 种石漠化程度之间植物叶片的 $N \times P$ 含量以及 N/P 值差异均不显著.由表 4 可知 3 种石漠化程度样地的植物叶 $N \times P$ 含量之间均呈显著正相关 N/P 值与 N 含量呈显著正相关 N/P 值与 N 含量呈显著正相关 N/P 值与 N 含量呈负相关 N/P 值与 N 含量量的关系显著 其他样地不显著.

3 讨 论

3.1 湘西南石漠化地区植物叶片 N、P 含量化学计量特征

湘西南石漠化地区常见灌丛植物叶片 N、P 含 量分别为 12.89、1.19 g·kg⁻¹ ,低于中国陆地植被叶 片 N、P 含量(分别为 20.20 和 1.46 g • kg⁻¹) [22] .低 于松嫩草地(分别为 24.20 和 2.00 g · kg⁻¹) [23] 和北 方荒漠区(分别为 24.45 和 1.74 g • kg⁻¹) [16]; 与同 在亚热带地区的植被叶片 N、P 含量(分别为 2%、 0.08%~0.10%)[10]相比 湘西南石漠化地区植物叶 片 N 含量较低 ,但 P 含量相当.土壤是植物养分的主 要来源 本研究中湘西南 3 种石漠化程度样地土壤 N 含量为 1.05~1.99 g·kg⁻¹ ,P 含量为 0.20~0.37 g·kg^{-1[24]} 高于刘兴诏等^[10] 研究亚热带鼎湖山地 区土壤 N、P 含量(N 含量为 0.20~1.00 g • kg⁻¹,P 含量为 0.15~0.30 g • kg⁻¹) ,但叶片 N 含量相对较 低,这与不同地区植物种的生物学特性有关,也与土 壤中 N 的有效性有关.此外 本地区的亚热带湿润性 气候也可能是导致植物叶片 N 含量比北方植物低 的原因之一[25].

本研究中 3 种石漠化程度样地植物叶片 $N_{v}P$ 含量差异不显著.石漠化地区土层浅薄且不连续 ,土

壤易冲刷侵蚀,营养元素也会随之流失^[20],因此石漠化土壤养分含量具有较强的异质性,但是植物叶中养分元素含量变异系数比草原生态系统植物^[22]和森林生态系统植物^[26]较低,一方面说明该地区植物叶片内养分含量变异程度较低,另一方面因为石漠化地区植物的生存环境较差,生物多样性低于健康的森林和草原生态系统.本研究中,常见的植物种类数量较低,导致植物叶片的 N、P 含量变异系数较低.

叶片 N/P 值变化幅度为 3.85~24.83 平均值为 11.24 低于陆生植物叶片 N/P(14.4)[22].有研究表 明 植物叶 N/P 值作为判断环境对植物生长养分供 应状况的指标,当叶片 N/P 值<14 时,植物生长主 要受 N 限制; N/P>16 时 植物生长主要受 P 限制; 当 14<N/P<16 时 植物生长受 N 和 P 共同限制[27]. 本研究中 3 种石漠化程度植物 N/P 平均值均<14, 所有样本中 78.7%的叶片 N/P 值<14.00 ,仅 9.0%的 叶片 N/P 为 16.00~24.83 ,且大部分分布于重度石 漠化地区.Braakhekke 等^[28] 认为 ,当 N/P>14 而植物 叶片 P 含量 $<1.0 g \cdot kg^{-1}$ 时 ,系统受 P 限制; 而当 N/P<10和植物叶片 N 含量<20.0 g · kg⁻¹时 ,系统受 N 限制 N/P 值为 10~14 时受到 2 种元素共同限制. 按照此阈值分析湘西南石漠化地区植物叶片 N、P 含量以及 N/P 值 ,发现 44.3% 植物叶片 N/P < 10 , 89.3%的植物叶片 N 含量<20.0 g • kg⁻¹ 21.1%植物 叶片 N/P>14 且植物叶片 P 含量<1.0 g • kg-1 ,该地 区植物受到 N 限制仍较严重.3 种石漠化地区植物 叶 N、P 含量具有显著的相关性,说明从植物个体到 生态系统的各个层次上,N、P 都是相互作用的[29]. N/P 值与植物叶 N 含量相关性显著 ,说明本研究区 植物叶片 N/P 值主要受到 N 含量的影响; N/P 值与 P 含量相关系数随着石漠化程度加深呈现增大的趋 势,说明随着石漠化的发展植物叶片 N/P 值可能逐 渐由 P 主导 ,植物会呈现受 P 限制的趋势.由此可 见 湘西南石漠化地区在进行经营管理时应多施氮 肥 在石漠化程度较深的地区应多施磷肥.

3.2 不同功能群植物之间叶片 $N \setminus P$ 化学计量特征 差异

湘西南石漠化地区不同生活型植物叶 $N \cdot P$ 含量及 N/P 值之间差异显著 表明不同生活型植物对石漠化环境养分适应策略不同 ,而不同石漠化程度之间植物叶片 $N \cdot P$ 含量及 N/P 值差异不显著 ,说明生境影响小于植物生物学特性的影响. 一年生草本植物叶 $N \cdot P$ 含量高于多年生草本植物 ,但低于常绿

灌木与落叶灌木,这与张珂等[13]的研究结果(一年 生与多年生草本植物叶 N 含量高于灌木) 不同,主 要原因是: 尽管一年生草本植物短寿命、快生长的杂 草策略 使得植物需要更多的氮用于快速生长和更 多的磷用于高比例的繁殖分配,但是灌木植物自身 的深根系特征使其具有较强的吸收能力[30] 在水土 流失、营养元素易流失的石漠化环境中具有较强的 适应能力.同时,植物 N、P 含量不仅与植物生活型 有关,还与降水、温度等气候因子有关,也说明湘西 南石漠化地区灌木对于 N、P 的吸收利用效率要高 于草本植物 而较低的 N/P 也说明草本植物更易受 到 N 限制.不同科植物之间 N、P 含量差异显著.豆科 植物 N 含量显著高于其他主要科植物 其原因主要 是豆科植物可以通过与其共生的根瘤菌固定大气中 的氮 而土壤中氮素养料的匮乏是根瘤形成、发育乃 至发挥固氮功能必不可少的先决条件 高浓度的硝 酸盐或铵盐的存在能够完全抑制根瘤的形成,而低 浓度的氮能促进植物生长并促进结瘤[31].由于叶片 中 P 含量与其他植物种相差不大, 所以 N/P 值比其 他植物种高,其生长主要受 P 限制,但本研究中豆 科植物叶片 N 含量仍低于松嫩草地豆科植物(33.9 g•kg⁻¹) [22]. 禾本科植物叶 N、P 含量明显低于其他 科植物,但禾本科植物叶片 N/P 值与除豆科植物外 其他功能群植物相当 说明除豆科植物外 其他植物 受到 N 胁迫程度相似.单子叶植物叶片的 N、P 含量 均低干双子叶植物,N/P 值差异不显著,这与禾本 科植物占单子叶植物比例较高有关.Thompson 等[32] 也研究发现,双子叶植物比单子叶植物具有更高的 营养物质浓度.C3 植物叶片 N、P 含量均高于 C4 植 物 这与前人研究结果一致[22].这是因为 C3 植物组 织中 Rubisco 的含量比 C4 高 ,Rubisco 的主要组成 物质为 N 2 种功能群植物叶片 N/P 值差异不显著, 说明 C3 和 C4 植物的差异主要体现在光合作用和 水分利用效率方面,而与 N、P 的限制关系不明 显[33].Güsewell[7] 认为,营养元素含量相对较低的 C4 植物 在 N、P 含量受到限制的时候可能在生长 发育中比 C3 植物更具优势,因而该石漠化地区 N、 P 含量较低的禾本科植物分布最广.

该地区土壤中虽然 N、P 均匮乏,植物叶片中 N、P 含量相对较低,但植物主要受 N 胁迫,应适量施加氮肥 辅以磷肥 在石漠化程度较深地区磷肥适量增多.固氮植物(尤其是豆科植物)、双子叶植物、C3 植物对改善该地区土壤养分含量状况具有重要意义,应加大引种.本研究区内灌木对于改善土壤养

分和生态系统恢复具有重要意义,草本植物中多年生草本植物比一年生草本植物具有优势,在进行植被恢复的同时应减少人为干扰.

参考文献

- [1] Zhang LX, Bai YF, Han XG. Application of N: P stoichiometry to ecology studies. Acta Botanica Sinica, 2003, 45: 1009–1018
- [2] Elser JJ, Bracken MES, Cleland EE, et al. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters, 2007, 10: 1134–1142
- [3] Liu C (刘 超), Wang Y (王 洋), Wang N (王 楠), et al. Advances research in plant nitrogen, phosphorus and their stoichiometry in terrestrial ecosystems:
 A review. Chinese Journal of Plant Ecology (植物生态学报), 2012, 36(11): 1205-1216 (in Chinese)
- [4] Wu W (邬 畏), He X-D (何兴东), Zhou Q-X (周启星). Advances in the study on the characteristics of nitrogen and phosphorus in ecosystem. *Journal of Desert Research* (中国沙漠), 2010, **30**(2): 296-302 (in Chinese)
- [5] Elser JJ, Sterner RW, Gorokhova E, et al. Biological stoichiometry from genes to ecosystems. Ecology Letters, 2000, 3: 540-550
- [6] Elser JJ, Acharya K, Kyle M, et al. Growth rate– stoichiometry couplings in diverse biota. Ecology Letters, 2003, 6: 936–943
- [7] Güsewell S. N: P ratios in terrestrial plants: Variation and functional significance. New Phytologist, 2004, 164: 243-266
- [8] Han L (韩 琳). N and P Stoichiometric Characteristics in Herbaceous Plant Leaves and Soil in Riparian Zone under Different Land Uses. Master Thesis. Nan-jing: Nanjing University, 2013 (in Chinese)
- [9] Lu J (鲁静), Zhou H-X (周虹霞), Tian G-Y (田广宇), et al. Nitrogen and phosphorus contents in 44 wetland species from the Lake Erhai Basin. Acta Ecologica Sinica (生态学报), 2011, 31(3): 709-715 (in Chinese)
- [10] Liu X-Z (刘兴诏), Zhou G-Y (周国逸), Zhang D-Q (张德强), et al. N and P stoichiometry of plant and soil in lower subtropical forest successional series in southern China. Chinese Journal of Plant Ecology (植物生态学报), 2010, 34(1): 64-71 (in Chinese)
- [11] He JS, Wang L, Flynn DFB, et al. Leaf nitrogen: phosphorus stoichiometry across Chinese grassland biomes. Oecologia, 2008, 155: 301–310
- [12] Zhang K (张 珂), Chen Y-L (陈永乐), Gao Y-H (高艳红), et al. Stoichiometry characteristics of leaf nitrogen and phosphorus of different plant functional groups in Alashan desert region. Journal of Desert Research (中国沙漠), 2014, 34(5): 1261-1267 (in Chinese)
- [13] Zhang K (张 珂), He M-Z (何明珠), Li X-R (李新荣), et al. Foliar carbon, nitrogen and phosphorus

- stoichiometry of typical desert plants across the Alashan Desert. *Acta Ecologica Sinica* (生态学报), 2014, **34** (22): 6538-6547 (in Chinese)
- [14] Niu D-C (牛得草), Li Q (李 茜), Jiang S-G (江世高), et al. Seasonal variations of leaf C: N: P stoichiometry of six shrubs in desert of China's Alxa Plateau.

 Chinese Journal of Plant Ecology (植物生态学报),
 2013, 37(4): 317-325 (in Chinese)
- [15] Liu W-D (刘万德), Su J-R (苏建荣), Li S-F (李帅锋), et al. Stoichiometry study of C, N and P in plant and soil at different successional stages of monsoon evergreen broad-leaved forest in Pu'er, Yunnan Province. Acta Ecologica Sinica (生态学报), 2010, 30(23): 6581-6590 (in Chinese)
- [16] Li Y-L (李玉霖), Mao W (毛 伟), Zhao X-Y (赵学勇), et al. Leaf nitrogen and phosphorus stoichiometry in typical desert and desertified regions, North China. Environmental Science (环境科学), 2010, 31(8): 1716-1725 (in Chinese)
- [17] Guo D-Y (郭冬艳). Research on Ecological Stoichiometry of Degraded Grassland: A Case Study of Grassland in Western Jilin Province. Master Thesis. Changchun: Jilin University, 2013 (in Chinese)
- [18] Hu Q-W (胡启武), Nie L-Q (聂兰琴), Zheng Y-M (郑艳明), et al. Effects of desertification intensity and stand age on leaf and soil carbon, nitrogen and phosphorus stoichiometry in *Pinus elliottii* plantation. *Acta Ecologica Sinica* (生态学报), 2014, **34**(9): 2246-2255 (in Chinese)
- [19] Zhou Z-Y (周志宇), Yan S-Y (颜淑云), Qin Y (秦彧), et al. Characteristics of shrub diversity in arid desert area of Alashan. Journal of Arid Land Resources and Environment (干旱区资源与环境), 2009, 23(9): 146-150 (in Chinese)
- [20] Li Y-Q (李艳琼), Deng X-W (邓湘雯), Yi C-Y (易昌晏), et al. The characteristics of plant and soil nutrients in the Karst area of southwest Hunan, China. Chinese Journal of Applied Ecology (应用生态学报), 2016, 27(4): 1015-1023 (in Chinese)
- [21] State Forestry Administration of the People's Republic of China (中华人民共和国国家林业局). Technology Regulations of Vegetation Restorationin Karst Desertification Zone (LY/T 1840–2009). Beijing: China Standards Press, 2009 (in Chinese)
- [22] Han WX, Fang JY, Guo DL, et al. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytologist, 2005, 168: 377–385
- [23] Song Y-T (宋彦涛), Zhou D-W (周道玮), Li Q (李强), et al. Leaf nitrogen and phosphorus stoichiometry in 80 herbaceous plant species of Songnen grassland in Northeast China. Chinese Journal of Plant Ecology (植物生态学报), 2012, 36(3): 222-230 (in Chinese)
- [24] Jing Y-R (景宜然), Deng X-W (邓湘雯), Deng D-H (邓东华), et al. Soil properties and their correlations under different grades of rocky desertification ecosystems in southwest Hunan, China. Journal of Soil and Water Conservation (水土保持学报), 2016, 30(1): 189-

- 195 (in Chinese)
- [25] Aerts R. Nutrient resorption from senescing leaves of perennials: Are there general patterns? *Journal of Ecology*, 1996, 84: 597-608
- [26] Huang X-B (黄小波), Liu W-D (刘万德), Su J-R (苏建荣), et al. Stoichiometry of leaf C, N and P across 152 woody species of a monsoon broad-leaved evergreen forest in Pu'er, Yunnan Province. Chinese Journal of Ecology (生态学杂志), 2016, 35(3): 567-575 (in Chinese)
- [27] Koerselman W , Meuleman AFM. The vegetation N : P ratio: A new tool to detect the nature of nutrient limitation. Journal of Applied Ecology , 1996 , 33: 1441-1450
- [28] Braakhekke WG, Hooftman DAP. The resource balance hypothesis of plant species diversity in grassland. *Jour*nal of Vegetation Science, 1999, 10: 187–200
- [29] He J-S (贺金生), Han X-G (韩兴国). Ecological stoichiometry: Searching for unifying principles from individuals to ecosystems. *Chinese Journal of Plant Ecology* (植物生态学报), 2010, **34**(1): 2-6 (in Chinese)

- [30] Liu C (刘 超), Bu Z-J (卜兆君), Ma J-Z (马进泽), et al. Comparative study on the response of deciduous and evergreen shrubs to nitrogen and phosphorus input in Hani Peatland of Changbai Mountains. Chinese Journal of Ecology (生态学杂志), 2015, 34(10): 2711-2719 (in Chinese)
- [31] Chou M-X (丑敏霞), Wei X-Y (魏新元). Review of research advancements on the molecular basis and regulation of symbiotic nodulation of legumes. *Chinese Journal of Plant Ecology* (植物生态学报), 2010, **34**(7): 876-888 (in Chinese)
- [32] Thompson K, Parkinson JA, Band SR, et al. Comparative study of leaf nutrient concentrations in a regional herbaceous flora. New Phytologist, 1997, 136: 679-689
- [33] Lambers H , Chapin FS , Pons TL. Plant Physiology. New York: Springer , 1998

作者简介 景宜然,女,1991年生,硕士研究生.主要从事森林生态学研究. E-mail: jingyrcsuft@ 163.com

责任编辑 孙 菊

景宜然,邓湘雯,魏辉,等. 湘西南石漠化地区灌丛植物叶 N、P 化学计量特征. 应用生态学报, 2017, **28**(2): 415-422 Jing Y-R, Deng X-W, Wei H, et al. Leaf nitrogen and phosphorus stoichiometry of shrubland plants in the rocky desertification area of Southwestern Hunan, China. *Chinese Journal of Applied Ecology*, 2017, **28**(2): 415-422 (in Chinese)