Crop & Pasture Science, 2017, **68**, 807–816 https://doi.org/10.1071/CP17220

Shifts in nitrogen and phosphorus uptake and allocation in response to selection for yield in Chinese winter wheat

Zheng Wang^{A,B}, Victor O. Sadras^B, Marianne Hoogmoed^B, Xueyun Yang^A, Fang Huang^A, Xiaoyu Han^A, and Shulan Zhang^{A,C}

^ACollege of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China. ^BSouth Australian Research and Development Institute, Waite Campus, Urrbrae, SA 5064, Australia. ^CCorresponding author. Email: zhangshulan@nwafu.edu.cn

Abstract. This study assessed changes in nitrogen (N) and phosphorus (P) uptake and partitioning in response to selection for yield in milestone varieties of Chinese winter wheat (*Triticum aestivum* L.). We established a factorial trial combining 11 nutrient–water regimes with three (2013–14) and five (2014–15) varieties released from 1970 to 2005. Grain yield increased at a rate of 0.46% year⁻¹, with no apparent increase in the uptake of nutrients. Nitrogen harvest index did not change, and P harvest index increased at a rate of 0.15% year⁻¹. Consequently, yield per unit N uptake and yield per unit P uptake increased at similar rates (0.4% year⁻¹) at the expense of nutrient concentration in grain, which declined at a rate of 0.47% year⁻¹ for N and 0.31% year⁻¹ for P. No trends in N nutrition index were found. Selection for yield in wheat increased the yield per unit nutrient uptake at the expense of grain nutrient concentration. Further gains in yield need to be matched by increasing N uptake to maintain grain protein. Dilution of P in grain needs to be considered in terms of the putatively undesirable role of phytate for human nutrition, and the need for P reserves in seed for crop establishment.

Additional keywords: breeding, grain nutrient concentration, nitrogen use efficiency, phosphorus use efficiency.

Received 16 June 2017, accepted 6 October 2017, published online 1 November 2017

Introduction

Globally, wheat breeding has significantly increased grain yield over the last five decades but at a declining relative rate (Fischer et al. 2014). The impact of selection for yield on the nitrogen (N) economy of wheat has been compared for breeding programmes in Australia, UK, Italy and Argentina (Sadras et al. 2016). During the last five decades in Australia, the rate of increase in N uptake matched the rate of increase in grain yield, leading to unchanged yield per unit N uptake. In addition, N harvest index (i.e. ratio of N in grain to N in total biomass) and grain protein concentration remained stable. By contrast, selection for yield of bread wheat in UK and Argentina and selection for yield of durum wheat in Italy did not increase N uptake, or where it did, the rate of increase was lower than the rate of increase in grain yield. Consequently, yield per unit N uptake increased while grain protein declined (Sadras et al. 2016). Tian et al. (2016) found similar results in China, when comparing cultivars developed between the 1950s and 2000s; the rate of change in yield $(0.8\% \text{ year}^{-1})$ was higher than the rate of increase in N uptake $(0.27\% \text{ year}^{-1})$, leading to decreased grain N concentration. In their experiment, however, crops where grown under two N rates and a single phosphorus (P) rate, and interactions between variety and N supply were not reported (Tian et al. 2016). In France, modern varieties had higher N uptake and N harvest index but grain N concentration decreased compared with older varieties (Brancourt-Hulmel et al. 2003).

Fewer studies have reported the effects of breeding for yield on P uptake and allocation in wheat. In Argentina, breeding for yield did not increase P uptake, hence the increase in yield per unit P uptake. In addition, P harvest index increased but at a low rate compared with yield, resulting in a decrease in grain P concentration (Calderini *et al.* 1995b). Egle *et al.* (1999) compared three new wheat varieties and one old variety released by CIMMYT. The new varieties had higher P uptake, while yield per P uptake improved slightly and grain P content did not decline significantly.

Nitrogen and P have differences in their soil and crop dynamics; therefore, it could be interesting to analyse the N and P economies in past wheat selection (Calderini *et al.* 1995b). Here we report field experiments in two successive seasons (2013–14, 2014–15) using three and five milestone cultivars, respectively, of winter wheat (*Triticum aestivum* L.) released between 1970 and 2005 in the Guanzhong region of Shaanxi province, and grown under contrasting nutrient and water supply in long-term fertiliser trials. The objective was to investigate the uptake and allocation of N and P to grain in response to variety, nutrient supply and their interaction.

Material and methods

Experimental design, varieties and environments

The experiments have been described in Wang *et al.* (2017) in a paper focusing on yield. Here we summarise key aspects of the

study, with emphasis on N and P. Briefly, the experiment was conducted in Yangling, on the Guanzhong Plain, near the southern edge of the Loess Plateau (34°17′51″N, 108°00′48″E; 534 m a.m.s.l.). Two long-term fertiliser experiments, which are managed by the Chinese National Soil and Fertilizer Efficiency Monitoring Base for Loessial Soil, provided the background to this study. The history of fertilisation and crop rotation in these experiments was reported previously (Yang *et al.* 2011*a*, 2011*b*).

The soil is a silt clay loam (clay 32%, silt 52%, sand 16%) Anthrosol with a terric horizon derived from manure and loess material (FAO 2014). The experimental setup and growing conditions have been described (Wang *et al.* 2017). Briefly, the design was a split-plot with three replicates, where fertiliser and water inputs were assigned to the main plot (Table 1) and wheat varieties to the subplots. Varieties (and their release dates) were Aifeng 3 (1970), Xiaoyan 6 (1980), Shaan 229 (1993), Xiaoyan 22 (2003) and Xinong 979 (2005). Varieties had similar height and phenology (Wang *et al.* 2017). In 2013–14, we factorially combined three varieties (Xiaoyan 6, Xiaoyan22 and Xinong 979) and 11 growing conditions. In 2014–15, we factorially combined all five varieties and 11 growing conditions.

Measurements

Soil samples were taken before fertiliser input at sowing by using a hand auger to a depth of 200 cm in 20-cm layers. Nitrate-N was extracted from 4 g fresh soil with 50 mL of 1 M KCL and was determined with an AutoAnalyzer3 (AA3; SEAL Co., Germany) continuous flow analyser.

Crop phenology was monitored regularly by using the scale of Zadoks *et al.* (1974). Shoots were sampled at anthesis to determine the N nutrition index (sample area $0.25-0.5 \text{ m}^2$) (Hoogmoed and Sadras 2016) and at maturity (sample area $0.5-5.8 \text{ m}^2$) to determine biomass and nutrient content. Samples were separated into organ components (leaf, stem and spike at anthesis; leaf, stem, grain and chaff at maturity), which were dried in a forced-air oven at 65°C for 36 h, weighed, then milled through a 1-mm sieve. Milled samples were digested

Table 1. Eleven growing environments from the combination of nutrient and water inputs, and the nitrogen (N), phosphorus (P) and potassium (K) application rates (kg ha⁻¹) in each environment

Treatments from Control to M2N2P2 are irrigated; dControl and dMNPK are rainfed; M, nutrients derived from manure. Table was published previously (Wang *et al.* 2017)

Treatment	Ν	Manure		F	ertilise	r		Total	
	Ν	Р	Κ	Ν	Р	Κ	Ν	Р	Κ
Control	0	0	0	0	0	0	0	0	0
N1P1	0	0	0	75	13	0	75	13	0
N2P2	0	0	0	120	26	0	120	26	0
M1	75	31	34	0	0	0	75	31	34
M1N1P1	75	31	34	75	13	0	150	44	34
M1N2P2	75	31	34	120	26	0	195	57	34
M2	120	50	55	0	0	0	120	50	55
M2N1P1	120	50	55	75	13	0	195	63	55
M2N2P2	120	50	55	120	26	0	240	76	55
dControl	0	0	0	0	0	0	0	0	0
dMNPK	95	39	43	40	47	56	135	87	99

with concentrated sulfuric acid (98%) and hydrogen peroxide (\geq 30%). Nitrogen concentration was determined by micro-Kjeldahl and P concentration by the vanadate–molybdate method (Kitson and Mellon 1944). Uptake of N and P (grain + straw) at maturity was calculated as a function of concentration and biomass in different organs.

Data analyses

Following the definitions of Moll et al. (1982) and Gastal et al. (2015), we calculated N uptake efficiency, N and P utilisation efficiency, N and P harvest index, and N nutrition index. Biomass and yield data used in the calculations were reported previously (Wang et al. 2017). Nitrogen uptake efficiency was calculated as the ratio between N uptake at maturity and N supply in the soil calculated as the sum of initial nitrate-N in soil and fertiliser (Table 1); mineralisation of N was not measured. Nitrogen and P utilisation efficiency was calculated as the ratio between yield and N or P uptake at maturity. Nitrogen and P harvest indices were calculated as the ratio between N or P in grain and total N or P uptake at maturity. The N nutrition index was calculated as the ratio between actual and critical N concentration in the shoot at anthesis, using the N dilution curve for wheat reported by Justes et al. (1994). Because this curve was derived for well-watered crops, we restricted the calculation of the N nutrition index to our irrigated treatments (Hoogmoed and Sadras 2016).

For each season, we used two-way analysis of variance to assess the response of N- and P-related traits to treatment, variety and treatment \times variety interaction.

The rate of change in yield and N- and P-related traits was calculated as the slope of the least-square linear regression expressed as a percentage of the value of the latest released variety for each treatment (Fischer *et al.* 2014; Sadras *et al.* 2016).

Results

Growing conditions

Environmental conditions during the experiment were described in Wang *et al.* (2017). Briefly, seasonal precipitation was 303 mm in 2013–14 and 239 mm in 2014–15, compared with 57-year rainfall average (1957–2013) of 266 mm. No extreme temperatures were apparent during the critical period of yield determination from stem elongation to 10 days after flowering (Fischer 1985). The combination of growing conditions and treatments generated a yield range of 0.9–8.3 tha⁻¹ during the two experimental seasons (Wang *et al.* 2017).

Nitrogen traits

Treatment, variety and interaction effects on N traits in the first and second season are summarised in Tables 2 and 3, respectively. In both seasons, treatments affected N uptake per unit available N and biomass per unit N uptake. Nitrogen uptake per unit soil N responded to variety only in 2013–14; note, however, that soil N did not include mineralisation, and this might introduce bias, particularly in the treatments with manure. Yield per unit N uptake, N harvest index and grain N responded to variety in both seasons. Interaction effects were detected for N uptake per unit soil N, yield per unit N uptake and N harvest

Table 2.Season 1 (2013–14): nitrogen (N) uptake per unit soil N available, biomass per unit N uptake, yield per unit N uptake, N harvest index, grain N concentration, and N nutrition index(ratio between actual and critical N concentration in the shoot at anthesis) of winter wheat varieties grown under different nutrient and water inputsSignificance oftreatments (T), varieties (V) and interaction (T × V) indicated as: $*P < 0.05$; $**P < 0.01$; $***P < 0.001$; $*.s.$, not significant ($P > 0.05$). Means followed by the same letter are not significantly different (using Fischer's 1.s.d. at $P = 0.05$): lower case letters for comparison among treatments, and upper case letters for comparison among varieties. Treatments are as in Table 1	2013–14): nitro (ratio between nts (T), varieties Fischer's I.s.d. a	gen (N) uptake J actual and critis (V) and interaction at $P = 0.05$): lowe	per unit soil N av cal N concentrati $n(T \times V)$ indicate x case letters for c	'ailable, biomass (on in the shoot a d as: *P < 0.05; **, comparison amon	per unit N uptal tt anthesis) of win P < 0.01; ***P < 0 g treatments, and	on 1 (2013–14): nitrogen (N) uptake per unit soil N available, biomass per unit N uptake, yield per unit N uptake, N harvest index, grain N concentration, and N nutrition index (ratio between actual and critical N concentration in the shoot at anthesis) of winter wheat varieties grown under different nutrient and water inputs reatments (T), varieties (V) and interaction (T × V) indicated as: $*P < 0.05$, $**P < 0.01$; $n.s.$, not significant ($P > 0.05$). Means followed by the same letter are not significantly different (using Fischer's 1.s. dt $P = 0.05$): lower case letters for comparison among treatments, and upper case letters for comparison among treatments are significantly different ($P > 0.05$). Means followed by the same letter are not significantly different (using Fischer's 1.s. dt $P = 0.05$): lower case letters for comparison among treatments.	uptake, N harv s grown under d cant (P>0.05). M or comparison am	est index, grain ifferent nutrient eans followed by t ong varieties. Tre	N concentration and water inputes and he same letter are atments are as i	n, and N nutri uts e not significant n Table 1	tion index ly different
Variety release date	Control	NIPI	N2P2	M1	MINIPI	M1N2P2	M2	M2N1P1	M2N2P2	dControl	dMNPK
				N uptake per uni	it soil N available	N uptake per unit soil N available (T***, V**, $T \times V^*$)	(*				
1980	0.83aA	0.28dA	0.51 bcA	0.631bA	0.51bcA	0.39cdA	0.71abA	0.53bcA	0.42cdA	0.27dA	0.51bcA
2003	0.95aA	0.34cA	0.41 bcA	0.86aA	0.51bcA	0.32cA	0.60 bA	0.57bcA	0.44bcA	0.32cA	0.59bA
2005	0.69 a A	0.29eA	0.44cdA	0.65abA	0.45cdA	0.43dA	0.66abA	0.52cdA	0.46cdA	0.29eA	0.55bcA
				Biomass per u.	nit N uptake (T**	Biomass per unit N uptake $(T^{***}, Vn.s., T \times Vn.s.)$					
1980	93.7cdeA	108.0abcA	94.5cdeA	123.2aA	101.8bcdA	92.9cdeAB	118.0abA	103.7bcA	86.3defA	78.8efA	71.9fA
2003	93.8bcA	92.3bcA	101.4bA	106.1bA	105.0bA	103.70bA	130.5aA	110.1abA	92.8bcA	72.9cAB	77.7cA
2005	93.9cA	95.8cA	99.4bcA	120.6aA	124.7aA	86.4cdB	117.9aA	113.9abA	92.0cA	68.0eB	71.7deA
				Yield per un	<i>Yield per unit</i> N uptake $(T^{***}, V^{***}, T \times V^{**})$	$(V^{***}, T \times V^{**})$					
1980	36.4cdA	42.1bcA	34.6deB	49.5aA	37.0cdB	32.59defC	44.5abB	36.0cdB	28.1efgB	26.6fgB	24.2gB
2003	43.0bcdA	42.7bcdA	47.9bcA	50.7bA	49.5bcAB	46.5bcA	61.9aA	50.6 bA	40.4cdeA	32.3eA	34.5deA
2005	40.5dA	44.2cdA	46.9bcdA	53.2abA	56.6aA	39.9dB	51.1abcB	53.6abA	42.3dA	27.0eB	32.1eA
				N harv	N harvest index $(T^{**}, V^*, T \times V^{**})$	$^{*}, T \times V^{**})$					
1980	0.83 abA	0.79abA	0.76abA	0.80abA	0.75abA	0.73abcA	0.76abA	0.70bcA	0.58dB	0.75abA	0.63 cdB
2003	0.792aA	0.80 aA	0.80 aA	0.67cB	0.80 aA	0.77abA	0.79aA	0.80 aA	0.69bcA	0.83 a B	0.77abA
2005	0.84 aA	0.82 aA	0.83 aA	0.80 aA	0.74abA	0.66bA	0.77aA	0.78aA	0.75abA	0.77aA	0.74abA
				Grain N	Grain N g kg ⁻¹ (T***, V**, T × Vn.s.)	*, $T \times Vn.s.$)					
1980	22.8bcA	19.0cdeA	22.1bcA	16.4eA	20.3cdeA	22.6bcA	17.3deA	19.4cdeA	20.8cdA	28.2aA	26.3abA
2003	18.5cA	18.7cA	16.8cdB	13.5deA	16.4cdB	16.7cdB	12.7eA	15.9cdeA	17.4cA	25.7aA	22.4bA
2005	20.9bcA	18.7cdA	17.6cdeB	15.2defA	13.1fC	16.6defB	15.4defA	14.8efA	17.83cdeA	28.9aA	23.0bA
				N nutritio	N nutrition index $(T^{***}, Vn.s., T \times Vn.s.)$	n.s., T× Vn.s.)					
1980	0.25cA	0.53bcA	0.74abA	0.33cA	0.53bcA	0.92aA	0.44 b c A	0.64abA	0.67abA		
2003	0.21eA	0.40cdeA	0.63bcAB	0.33deA	0.60 bcA	0.81abA	0.47cdA	0.57cA	0.92 a A		
2005	0.22fA	0.43deA	0.57bcB	0.31efA	0.49cdA	0.75aA	0.37deA	0.67abA	0.79 aA		

Nuprafe Nuprafe Per unit soil N available (T**, Vns., T×V**) 0.43abA 0.40bcA 0.33bcA 0.40bcA 0.43abA 0.40bcA 0.43abA 0.44bcA 0.33bcA 0.43abA 0.40bcA 0.43bA 0.47abA 0.44bcA 0.53bbcA 0.53bbcA 0.45bA 0.44bcA 0.47abA 0.44bbA 0.51bbA 0.53bbcA 0.53bbcA 0.47abA 0.44bcA 0.43bA 0.51bbA 0.53bbcA 0.53bbcA 0.47abA 0.44bcA 0.44bcA 0.43bA 0.51bbA 0.51bbA 0.51bbA 0.51bbA 0.51bbA 0.51bbA 0.47abA 0.44bcA 0.43bA 0.91bB 123.1abcA 117.0bbB 10.1abA 113.4aB 11.3bbA 111.122abA 108.2cA 113.5bbA 10.10cdB 129.3abA 123.1abA 123.1abA 123.1abA 123.1abA 123.1abA 123.1abA 123.1abA 113.0bbB 125.1abA 139.3aA 1140.5aA 113.0abB 125.1abA 135.0aA 125.1abA 125.1abA 125.1abA <th>Variety release date Control N</th> <th>NIP1 N2P2</th> <th>M1</th> <th>MINIPI</th> <th>M1N2P2</th> <th>M2</th> <th>M2N1P1</th> <th>M2N2P2</th> <th>dControl</th> <th>dMNPK</th>	Variety release date Control N	NIP1 N2P2	M1	MINIPI	M1N2P2	M2	M2N1P1	M2N2P2	dControl	dMNPK
0.43bA 0.40bcA 0.33bcA 0.46bcdeA 0.32bA 0.44bcA 0.44bcA 0.43bA 0.44bcA 0.53aA 0.46bcdeA 0.53abA 0.44bcA 0.44bcA 0.45abA 0.44bcA 0.53abA 0.55abA 0.44bcA 0.44bcA 0.45abA 0.45bA 0.55abA 0.55abA 0.55abA 0.44bcA 0.45abA 0.45bA 0.55abA 0.55abA 0.55abA 0.45bA 0.44bcA 0.45bA 0.51abA 0.55abA 0.55abA 0.55abA 0.45bA 0.45bA 115.1cA 108.2cA 117.0bcB 117.0bcB 118.4abB 11 114.1bbA 117.3bcA 113.5abA 110.6abA 113.4aBB 12.5abA 114.1bbA 117.3bcA 113.6bcB 100.0cdB 25.3abA 113.6bcB 100.0cdB 112.2bbA 113.7bbA 113.6bcB 118.0bcB 108.8bcAB 126.1abA 114.1bbA 117.7bbA 113.7bbA 113.0bcB 126.1abA 125.1abA 114.1bbA			N uptake per	unit soil N availal	ole (T**. Vn.s	$[\times V^{**})$				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			0.46bcdeA	0.32bA	0.43abA	0.40bcA	0.33bcA	0.46bcdeA	0.32bA	0.43abA
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			0.40defA	0.47aA	0.42abA	0.40 bcA	0.52aA	0.40defA	0.47aA	0.42abA
0.47abA 0.44bcA 0.44bbA 0.47abA 0.44bbA 0.45bA 0.51abA 0.50aA 0.45bA 0.45bA 0.45bA 0.45bA 0.45bA 0.51abA 0.57aA 0.45bA 0.45bA 0.45bA 0.45bA 0.51abC 0.57aA 0.45bA 0.117.0aA 113.6bB 117.0aA 113.6bB 117.0aA 113.6bB 10.6bA 0.35bA 0.35bA <th0.35ba< th=""> 0.35bA 0.35bA</th0.35ba<>			0.55abcA	0.51aA	0.46abA	0.61aA	0.55aA	0.55abcA	0.51aA	0.46abA
0.45bA 0.51abA 0.57abA 0.50aA 0.48bA 0.45bA 0.48abA 0.45bA 0.51abA 0.57abA 0.48abA 0.45bA 115.1cA 108.2cA 137.0abA 123.1abcA 113.5abA 1			0.40defA	0.41abA	0.47abA	0.44 bcA	0.44abA	0.40defA	0.41 abA	0.47abA
Biomass per unit Nupluke (T^{**} , V^* , $T \times Vn.s$) 115.1cA 137.0abA 137.0abA 137.0abA 137.0abA 133.3aA 113.1ab 112.2abA 108.4bA 99.1bB 107.5cAB 123.3aA 113.1ab 112.2abA 112.8aA 117.3abA 123.3aA 113.6cB 101.0cB 129.8aAB 114.1bcA 127.8aA 117.7abcAB 138.3aA 113.6bcB 101.0cB 129.8aAB 113.1aB 128.6abA 130.8abA 117.7abcAB 138.3aA 113.6bcB 101.0cB 129.8aAB 113.1abcA 128.6abA 130.8abA 65.3aA 51.9bcA 45.5cdAB 51.9bcA 45.5cdAB 51.9bcA 51.abcA 51.abcA 49.1abA 48.7bb 56.5aA 53.9aC 50.1abA 53.1abcA 51.abcA			0.57abA	$0.50 \mathrm{aA}$	0.48abA	0.45bA	0.51abA	0.57abA	$0.50 \mathrm{aA}$	0.48abA
II5.1cA 108.2cA 137,0ab 125.1abc 117,0bcB 107,5cAB 139,3aA 11 104.7ab 113.8ab 113.6bcB 113,6bcB 117,0bcB 107,5cAB 139,3aA 113,1aB 104.7ab 113.8ab 113.6bcB 113,6bcB 109,1abc 113,1aB 114.1bcA 127.8aA 107,4cB 138,3aA 113,6bcB 101,0cdB 129,8aAB 1 128.6ab 130.8bbA 117,7abcAB 140,1aA 118,0abcB 108,8bcAB 159,1abc 133,1aB 128.6abA 51.9abA 51.9abA 57.8abcA 57.81abBC 51.9bcA 46.6ctAB 50.1abcAB 15.1abcAB 51.9abA 51.9abA 57.8abcA 53.9aC 50.1abA 50.1abAB 52.0abA 53.9abC 54.2aA 53.1abcA 51.abcAB			Biomass 1	ver unit N uptake	$(T^{**}, V^*, T \times V)$	n.s.)				
112.2ab 108.4bA 99.1bB 123.3ab 140.5aA 119.1abA 118.4abB 1 104.7a 127.8aA 113.5aAB 122.1aA 122.4aAB 117.0aA 113.1aB 114.1bcA 127.8aA 113.5aAB 132.1aA 112.4aAB 127.8aA 113.5aAB 122.1aA 113.1aB 117.0aA 113.1aB 11 128.6abA 130.8abA 137.7abCAB 45.3cdA 52.3aA 57.1abcAB 12.4aAB 117.0aA 113.1aB 11 128.6abA 57.1abCA 57.3bbA 57.3bbA 55.3bcAB 57.3bcA 55.1abcA 51.1abA 55.1abcA 51.1abA 55.1abcA 51.1abA 51.1abA 55.1abcA 51.1abA 51.1abA 55.1abcA 51.1abA 55.1abcA 51.1abA 51.1ab			125.1abcA	117.0bcB	107.5cAB	139.3aA	114.2cA	114.4cAB	105.5cA	103.3cAB
104.7aA 113.5aA 113.5aAB 122.1aA 122.4aAB 117.0aA 113.1aB 1 114.1bcA 127.8aA 107.4cB 138.3aA 117.7abcAB 101.0cdB 129.8aAB 1 12.86abA 130.8abA 117.7abcAB 140.1aA 118.0abcB 100.0cdB 129.8aAB 1 12.86abA 130.8abA 117.7abcAB 19.1abA 85.1abcA 46.5clabcAB 1 47.8bcdA 46.5cdAB 57.3abC 55.3bcA 53.9aC 50.1abA 54.2aA 59.1abA 51.9abA 51.9bbA 57.3abC 55.3bcAB 6.7abA 57.3abC 59.1abA 0.1bA 52.6bcA 55.5bcAB 6.7abA 57.3abC 50.1abAB 57.0abA 0.7bbA 54.1abA 0.7abA 0.7abA 0.7abA 0.7abA 0.7bbA 0.7bbA 0.80abA 0.80abA 0.80abA 0.80abA 0.7abA 0.7bbA 0.7bbA 0.80abA 0.80abA 0.7abA 0.7abB 0.74bB 0.7bbA 0.7bbA	_		123.3abA	140.5aA	119.1abA	118.4abB	120.8abA	122.3abA	114.0abA	118.7abA
114, IbcA 127, SaA 107, 4cB 133, 3aA 113, 6bcB 101, 0cB 129, SaAB 1 128, 6abA 130, SabA 117, 7abcAB 140, IaA 118, 6abB 168, SbcAB 150, JabcAB 136, JabcAB 151, JabcA 55, JabcAB 56, JabcAB 56, JabcAB 56, JabcAB 56, JabcAB 56, JabcAB 51, JabcA 49, JabcA 46, SeclAB 56, JabcAB 56, JabcA 56, JabcAB 57, JabcA 59, JabcA 47, Tbb 59, JabcA 57, JabcA 59, JabcA 0, 75, JabcA 0, 75, SaA 0, 75, JabcA			122. laA	122.4aAB	117.0aA	113.1aB	117.0aA	103.9aB	107.4aA	109.5aAB
128.6abA 130.8abA 117.7abcAB 140.1aA 118.0abcB 108.8bcAB 126.1abcAB 1 47.8bcdA 45.3cdA 62.9aA 57.81abBC 51.9bcA 46.5cdAB 55.1abcA 49.1abA 51.3bbA 51.9bbA 55.1abcA 55.1abcA 55.1abcA 51.9abA 57.3abcA 55.3bcAB 65.2aAB 57.1abA 50.1bbAB 52.0abA 51.9abA 57.3abcA 55.3bcAB 65.2aAB 57.2abcA 50.1bbAB 52.0abA 54.1bbcA 57.3abcA 55.3bcAB 65.2aAB 57.2abcA 50.1bbAB 52.0abA 54.1bbcA 57.3abcA 0.75abA 0.75abA 0.74bA 0.74bA 0.74bA 0.80abA 0.75abA 0.80abcA 0.74bA 0.81abA 0.76bbA 0.81abA 0.76abA 0.76abA 0.81abA 0.77abA 0.80abcA 0.74bA 0.81abA 0.76abA 0.76abA 0.80abcA 0.74bB 0.74bA 0.81abA 0.76abA 0.76abA 0.80abcA 0.74bB </td <td></td> <td></td> <td>138.3aA</td> <td>113.6bcB</td> <td>101.0cdB</td> <td>129.8aAB</td> <td>109.5bcA</td> <td>115.1bAB</td> <td>102.6bcdA</td> <td>93.1dB</td>			138.3aA	113.6bcB	101.0cdB	129.8aAB	109.5bcA	115.1bAB	102.6bcdA	93.1dB
Yield per unit N uptake (T***, V***, T × V**) 47.8bcdA 46.3cdA 57.9labC 51.9bcA 46.5cdAB 55.1abcA 49.1abA 51.9abA 57.3labBC 51.9bcA 45.5cdAB 55.1abcA 51.9abA 51.9abA 55.3bcAB 53.9aC 50.1abA 50.1abAB 57.1abcA 51.9abA 55.5bcAB 55.5bcAB 57.9abA 57.3abC 59.1abA 57.0abA 51.9abA 57.5abcA 55.5bcAB 57.9abA 57.2abbA 59.1abA 57.2abA 52.6bcA 55.5bcAB 66.2aAB 57.2abA 0.7abbA 0.7bbcdA 59.1abA 52.6bcA 0.80abA 0.75cB 0.83aA 0.7abbA 0.7bbcB 0.7bbA 0.80abA 0.7abA 0.80abA 0.77abA 0.80abA 0.7bbCB 0.81abA 0.76abA 0.80abA 0.7abbA 0.7bbCA 0.81abA 0.7bbCB 0.81abA 0.76abA 0.76abA 0.80abA 0.77abA 0.80abA 0.7bbCB 0.81abA 0.76abA		117.7abcA	140.1aA	118.0abcB	108.8 bcAB	126.1abcAB	109.2bcA	113.8bcAB	102.7cA	113.6bcAB
47.8bcdA 46.3cdA 6.2.9aA 57.81abBC 51.9bcA 46.5cdAB 55.1abcA 49.1abA 48.7abA 43.7bB 49.7abC 54.2aA 54.2aA 54.3bcA 55.1abcA 51.9abA 51.9abA 55.5bcAB 67.3abC 50.1abAB 52.0abA 59.1abA 54.7abC 51.9abA 57.3abcA 55.5bcAB 67.3abC 50.1abAB 59.1abA 52.6bcA 57.3abcA 55.5bcAB 67.3abC 50.1abAB 59.1abA 52.6bcA 57.3bcA 55.3bcAB 65.3aA 0.7abA 59.1abA 0.80abA 0.80abA 0.80abA 0.80abA 0.80abA 0.80abA 0.80abA 0.81abA 0.73abA 0.80abCA 0.81abA 0.74bB 0.74bA 0.81abA 0.76abA 0.81abA 0.80abAA 0.81abA 0.73abA 0.81abA 0.73abA 0.81abA 0.76abA 0.76abA 0.81abA 0.73abA 0.81abA 0.73abA 0.81abA 0.76abA 0.76abA 0.81abA <			Yield per	unit N uptake (T [*]	***, V***, T × ¹	(**/				
49.1abA 48.7abA 43.7bB 49.7abC 54.2aA 44.7bB 54.2aA 51.9abA 51.9abA 51.9abA 51.9abA 51.9abA 50.1abA 50.1abAB 52.0abA 51.9abA 51.9abA 55.5bcAB 65.2aAB 57.2abcA 50.1abAB 50.1abAB 52.0abA 52.6bcA 57.5bcAB 65.2aAB 57.2abcA 50.1abAB 59.1abA 0.80abA 0.75cB 0.80abA 0.75cB 53.3bcAB 60.1bA 59.1abA 0.80abA 0.75cB 0.80abA 0.77abA 0.80abA 0.77abA 0.80abA 0.77abA 0.80abA 0.82aA 0.80abCd 0.81abA 0.77abA 0.80abCA 0.81abA 0.82abA 0.76abA 0.77abA 0.80abCA 0.80abCA 0.81abA 0.73bbCA 0.81abA 0.76abA 0.77abA 0.81abA 0.77abA 0.81abA 0.73bbCA 0.81abA 0.76abA 0.77abA 0.81abA 0.77abA 0.81abA 0.77bcA 0.81abA 0.76abA 0.80abCA 0.80abCA 0.80abCA 0.80abA 0.77bcA <t< td=""><td></td><td></td><td>57.81abBC</td><td>51.9bcA</td><td>46.5cdAB</td><td>55.1abcA</td><td>52.3bcAB</td><td>45.9cdAB</td><td>39.5dAB</td><td>46.7cdA</td></t<>			57.81abBC	51.9bcA	46.5cdAB	55.1abcA	52.3bcAB	45.9cdAB	39.5dAB	46.7cdA
51.9abA 51.9abA 55.5aA 53.9aC 50.1abA 50.1abAB 52.0abA 54.1bcdA 58.8bcA 55.5bcAB 67.2abA 54.0bcdA 46.6efAB 60.1bA 57.5abcA 55.5bcAB 67.2aA 57.2abcA 50.8bcA 59.1abA 52.8cdcAB 67.2aA 57.2abcA 50.8bcA 59.1abA 0.80abA 0.75cB 0.83aA 0.80abA 0.74bB 0.76bcB 0.81abA 0.77abA 0.81abA 0.74bB 0.82aA 0.82aA 0.81abA 0.77abA 0.81abA 0.74bB 0.74bA 0.82aA 0.81abA 0.76abA 0.81abA 0.73bbA 0.74bB 0.76bcB 0.82aA 0.76abA 0.76abA 0.81abA 0.80abA 0.73bbA 0.78bbA 0.82aA 0.76abA 0.76abA 0.81abA 0.80abA 0.79bcA 0.81abA 0.76abA 0.76abA 0.80abA 0.78bbA 0.78bbA 0.78bbA 0.76abA 0.76abA 0.80abA 0.79bcA 0.81abA 17.2abA 15.3abA 15.6bcA 15.3abA <t< td=""><td></td><td></td><td>49.7abC</td><td>54.2aA</td><td>44.7bB</td><td>54.2aA</td><td>46.7abB</td><td>44.2bB</td><td>41.1bB</td><td>45.7abA</td></t<>			49.7abC	54.2aA	44.7bB	54.2aA	46.7abB	44.2bB	41.1bB	45.7abA
54.1bcdA 58.8bcA 52.8cdeAB 67.9aA 54.0bcdA 46.6efAB 60.1bA 52.6bcA 57.5abcA 55.5bcAB 66.2aAB 57.2abcA 50.8bcA 59.1abA 52.6bcA 57.5abcA 55.5bcAB 66.2aAB 57.2abcA 50.8bcA 59.1abA 0.80abA 0.80abA 0.75cB 0.83aA 0.80abA 0.79bcA 59.1abA 0.82aA 0.82aA 0.81abA 0.77abA 0.80abA 0.79bcA 0.82aA 0.81abA 0.77cdA 0.81abA 0.80abAB 0.77abA 0.81abA 0.82abC 0.81abA 0.77cdA 0.81abA 0.80abAB 0.77abA 0.81abA 0.82abC 0.76abA 0.76abA 0.80abAB 0.77abA 0.81abA 0.79bcdeAB 0.76bcB 0.76abA 0.76abA 0.80abAB 0.77abA 0.81abA 0.82abC 0.81abA 0.76abA 0.81abA 0.80abCA 0.80abA 0.79bcdeAB 0.76bcB 0.81abA 0.76abA 0.81abA 0.80abCA 0.81abA 0.80abA 0.80abA 0.79bcd 13.3bcA			53.9aC	50.1abA	50.1abAB	52.0abA	51.4abAB	44.0bB	50.1abA	46.9abA
52.6bcA 57.5bcAB 66.2aAB 57.2abcA 50.8bcA 59.1abA 0.80abA 0.80abA 0.75cB 0.83aA 0.80abA 0.76bcB 59.1abA 0.80abA 0.80abA 0.75cB 0.83aA 0.80abA 0.76bcB 0.76bcB 0.82aA 0.82aA 0.81abcdA 0.81abcdA 0.80abcdA 0.79abcA 0.82aA 0.81abA 0.77abA 0.81abA 0.80abcdA 0.80abcdA 0.79abcA 0.81abA 0.81abA 0.77abA 0.81abA 0.80abcdA 0.81abA 0.76bbA 0.81abA 0.76abA 0.76abA 0.81abA 0.80abcdA 0.81abA 0.76bcB 0.81abA 0.76abA 0.76abA 0.81abA 0.80abcA 0.81abA 0.76bcB 0.81abA 0.76abA 0.76abA 0.81abA 0.80abcA 0.80abcA 0.81abA 0.76bcB 0.81abA 0.76abA 0.76abA 0.81abA 0.78abA 0.81abA 0.78abA 0.81abA 15.2abA 15.5abA 15.5abA		52.8cdeA	67.9aA	54.0bcdA	46.6efAB	60.1bA	48.8defAB	47.8defAB	46.4efAB	43.9fA
N harvest index (T**, V***, T × V*) 0.80abA 0.80abA 0.75cB 0.83aA 0.80abA 0.79abcA 0.76bcB 0.82aA 0.82aA 0.74bB 0.79abcA 0.82aA 0.82aA 0.82aA 0.81abA 0.81abA 0.73bbA 0.74bB 0.76bcF 0.82abcA 0.81abA 0.77abA 0.81abA 0.80abcdA 0.81abA 0.82abcA 0.81abA 0.76abA 0.77abA 0.81abA 0.80abcA 0.81abA 0.81abA 0.82abcA 0.76abA 0.77abA 0.81abA 0.80abcA 0.81abA 0.81abA 0.82abcA 0.76abA 0.75abA 0.73bbCA 0.81abA 0.75bcA 0.81abA 0.76abA 15.5abA 15.5abA 15.5abA 15.3abA 17.2abA 15.7abA 15.5bcA 170abA 15.3abA 16.8aA 15.8abA 15.5aA 15.3abA 15.3abA 16.5abA 15.7abA 15.5aA 15.3abA 15.3abA 16.5aA 15.7abA 15.5aA			66.2aAB	57.2abcA	50.8bcA	59.1abA	53.0bcA	52.4bcA	47.0cAB	50.3bcA
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			$N h_{0}$	arvest index (T**,						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0.83aA	0.80abA	0.79abcA	0.76bcB	0.82aA	0.76bcA	0.80 abAB	0.80abA
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0.77abA	0.74bB	0.74bA	0.82aA	0.75abB	0.70 bB	0.77abB	0.75abAB
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		IA	0.80abcdA	0.78bcdeAB	0.76defA	0.82abcA	0.74efB	0.72fAB	0.83abA	0.77cdefAB
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			0.80abcA	0.81abA	0.79bcA	0.81abA	0.77cdB	0.75dAB	0.82 a A B	0.77cdAB
Grain $Ng kg^{-1}$ (T***, V**, T × Vn.s.) 16.9abA 17.5abA 12.3cB 14.3bcAB 15.6bcA 13.9bcA 17.2abA 16.9abAB 19.0aA 15.7abA 15.6bcA 15.3abA 15.3abA 17.2abA 16.9abAB 19.0aA 15.7abA 15.5aA 15.3abA 15.3abA 15.0cdeA 13.2efB 15.4bcdeAB 11.9fB 14.9cdeA 15.2aA 15.3abA 15.0cdeA 13.2efB 15.4bcdeAB 11.9fB 14.9cdeA 15.3abA 13.5defA 15.0cdeA 13.4bcAB 11.8fB 14.9cdeA 15.3abA 13.5defA 14.5bcA 13.4bcAB 11.8fB 14.9cdeA 0.63abA 0.33edA 0.28fA 0.49cdA 0.63abA 0.33efA 0.43deA 0.43deA 0.30eA 0.49bcA 0.55bcA 0.53abC 0.63aA 0.43cdA 0.26dA 0.49bcA 0.55abA 0.53abA 0.38cdA 0.38cdA 0.24cA 0.49bcA 0.55abA 0.53abA 0.38cdA 0.49bcA 0.28dA 0.49bcA 0.53aA 0.53aA 0.54dA			0.77abA	0.80abA	0.78abA	0.81abA	0.81aA	0.77abA	0.81aAB	0.74bB
16.9abA 17.5abA 12.3cB 14.3bcAB 15.6bcA 17.0abA 13.9bcA 17.2abA 16.9abAB 19.0aA 15.7abA 15.5aA 15.3abA 15.3abA 17.2abA 16.9abAB 19.0aA 15.7abA 15.5aA 15.3abA 15.3abA 16.8aA 15.8aAB 14.3aB 14.9aA 15.5aA 15.3abA 15.3abA 15.0cdeA 13.2efB 15.4bcdeAB 11.9fB 14.9cdeA 15.3abA 13.5defA 15.0cdeA 13.4bcAB 11.8cB 11.9fB 14.9cdeA 13.5defA 13.5defA 14.5bcA 13.4bcAB 11.8cB 11.8cB 14.0bcA 13.5defA 13.5defA 0.28fA 0.49cdA 0.63abA 0.39efA 0.67aA 0.44deA 0.30eA 0.49bcA 0.60abA 0.35edA 0.67aA 0.43cdA 0.26dA 0.49bcA 0.55bA 0.53abCA 0.63aA 0.43cdA 0.26dA 0.49bcA 0.53abCA 0.63aA 0.60aA 0.40bcA 0.28dA 0.49bcA 0.65aA 0.63aA 0.61aA 0.34cdA <td></td> <td></td> <td>Grai</td> <td></td> <td>$V^{**}, T \times Vn.s.$</td> <td></td> <td></td> <td></td> <td></td> <td></td>			Grai		$V^{**}, T \times Vn.s.$					
17.2abA 16.9abAB 19.0aA 15.7abA 13.6bA 16.5abA 15.3abA 16.8aA 15.8aAB 14.3aB 14.9aA 15.5aA 15.3abA 15.3abA 16.8aA 15.8aAB 14.3aB 14.9aA 15.5aA 15.3abA 15.3abA 15.0cdeA 13.2efB 15.4bcdeAB 11.9fB 14.9cdeA 15.3abA 13.5defA 14.5bcA 13.4bcAB 11.8cB 11.9fB 14.9cdeA 13.5defA 13.5defA 14.5bcA 13.4bcAB 11.8cB 11.8cB 14.4bbA 13.8bcA 13.8bcA 0.28fA 0.49cdA 0.63abA 0.39efA 0.35deA 0.43deA 0.44deA 0.30eA 0.49bcA 0.60abA 0.35deA 0.55abCA 0.67aA 0.43cdA 0.26dA 0.47bcA 0.55bA 0.55abCA 0.63aA 0.43cdA 0.40bcA 0.28dA 0.49bcA 0.55abA 0.63aA 0.60aA 0.35cdA 0.38cdA 0.24cA 0.49bcA 0.65aA 0.40bcA 0.61aA 0.34cdA 0.28dA 0.44bcA 0.53abA 0.				15.6bcA	17.0abA	13.9bcA	15.7bcA	16.6bA	20.4aA	17.1abA
16.8aA 15.8aAB 14.3aB 14.9aA 15.5aA 15.2aA 15.8aA 15.0cdeA 13.2efB 15.4bcdeAB 11.9fB 14.9cdeA 15.3abA 13.5defA 15.0cdeA 13.2efB 15.4bcdeAB 11.9fB 14.9cdeA 15.3abA 13.5defA 14.5bcA 13.4bcAB 11.8cB 11.8cB 14.0bcA 15.3abA 13.8bcA 0.28fA 0.49cdeA 0.63abA 0.39efA 0.43deA 0.44deA 0.30eA 0.49bcA 0.60abA 0.35deA 0.55abcA 0.43cdA 0.43cdA 0.26dA 0.47bcA 0.59bA 0.35cdA 0.55abcA 0.63aA 0.43cdA 0.26dA 0.47bcA 0.59bA 0.35cdA 0.63aA 0.63aA 0.40bcA 0.28dA 0.40bcA 0.53abCA 0.63aA 0.60aA 0.53cdA 0.40bcA 0.28dA 0.44bcA 0.65aA 0.35cdA 0.61aA 0.34cdA			15.7abA	13.6bA	16.5abA	15.3abA	16.1abA	15.9abA	18.8aA	16.7abA
15.0cdeA 13.2efB 15.4bcdeAB 11.9fB 14.9cdeA 16.9abcA 13.5defA 14.5bcA 13.4bcAB 14.4bcB 11.8cB 14.0bcA 15.3abA 13.8bcA 14.5bcA 13.4bcdB 14.4bcB 11.8cB 14.0bcA 15.3abA 13.8bcA 0.28fA 0.49cdeA 0.63abA 0.39efA 0.39efA 0.43deA 0.44deA 0.30eA 0.49bcA 0.60abA 0.35deA 0.35deA 0.63abCA 0.43cdA 0.26dA 0.47bcA 0.55bA 0.35cdA 0.49bcA 0.63abA 0.35cdA 0.49bcA 0.26dA 0.47bcA 0.55bA 0.35cdA 0.63aA 0.40bcA 0.62aA 0.40bcA 0.28dA 0.49bcA 0.55bA 0.35cdA 0.63aA 0.60aA 0.35cdA 0.28dA 0.49bcA 0.63aA 0.63aA 0.61aA 0.30cdA 0.28dA 0.49bcA 0.53aA 0.61aA 0.34cdA			14.9aA	15.5aA	15.2aA	15.8aA	14.3aA	16.4aA	16.7aA	16.6aA
14.5bcA 13.4bcAB 14.4bcB 11.8cB 14.0bcA 15.3abA 13.8bcA $Nutrition$ index (T***, Vn.s., T × Vn.s.) $Nutrition$ index (T***, Vn.s., T × Vn.s.) 0.44deA $0.28fA$ $0.49bcA$ $0.53abA$ $0.39efA$ $0.43deA$ $0.43deA$ $0.30eA$ $0.49bcA$ $0.55deA$ $0.53abCA$ $0.43deA$ $0.43cdA$ $0.26dA$ $0.49bcA$ $0.55bA$ $0.35cdA$ $0.49bcA$ $0.35cdA$ $0.49bcA$ $0.33cdA$ $0.43cdA$ $0.26dA$ $0.49bcA$ $0.55bA$ $0.35cdA$ $0.49bcA$ $0.62aA$ $0.40bcA$ $0.26dA$ $0.49bcA$ $0.52abA$ $0.61aA$ $0.30cdA$ $0.28dA$ $0.49bcA$ $0.52aA$ $0.61aA$ $0.34cdA$ $0.28dA$ $0.49bcA$ $0.52aA$ $0.61aA$ $0.34cdA$		15.4bcdeA	11.9fB	14.9cdeA	16.9abcA	13.5defA	15.7abcdA	16.0abcA	17.9aA	17.7abA
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$			11.8cB	14.0bcA	15.3abA	13.8bcA	15.5abA	14.8abA	17.4aA	14.6abcA
0.28fA 0.49cdeA 0.63abA 0.39efA 0.43deA 0.67aA 0.44deA 0.30eA 0.49bcA 0.60abA 0.35deA 0.55abcA 0.63aA 0.43cdA 0.30eA 0.49bcA 0.60abA 0.35deA 0.55abcA 0.63aA 0.43cdA 0.26dA 0.47bcA 0.59bA 0.35cdA 0.49bcA 0.63aA 0.43cdA 0.26dA 0.47bcA 0.59bA 0.35cdA 0.49bcA 0.62abA 0.38cdA 0.24cA 0.49bA 0.55cdA 0.40bcA 0.63aA 0.40bcA 0.28cdA 0.24cA 0.49bA 0.52aA 0.40bcA 0.61aA 0.34cdA 0.28dA 0.44bcA 0.55aA 0.53abA 0.61aA 0.34cdA			N nutr	ition index (T***,	Vn.s., $T \times Vn.s$	(;				
0.30eA 0.49bcA 0.60abA 0.35deA 0.55abcA 0.63aA 0.43cdA 0.26dA 0.47bcA 0.59bA 0.35cdA 0.49bcA 0.62abA 0.38cdA 0.24cA 0.49abA 0.62aA 0.40bcA 0.63aA 0.40bcA 0.28dA 0.44bcA 0.65aA 0.32cdA 0.53abA 0.61aA 0.34cdA			0.39efA	0.43deA	0.67aA	0.44deA	0.55bcdAB	0.61abcB		
0.26dA 0.47bcA 0.59bA 0.35cdA 0.49bcA 0.62abA 0.38cdA 0.24cA 0.49abA 0.62aA 0.40bcA 0.63aA 0.40bcA 0.28dA 0.44bcA 0.55aA 0.32cdA 0.53abA 0.61aA 0.34cdA			0.35deA	0.55abcA	0.63 a A	0.43cdA	0.59abA	0.54abcB		
0.24cA 0.49abA 0.62aA 0.40bcA 0.63aA 0.60aA 0.40bcA 0.28dA 0.44bcA 0.65aA 0.32cdA 0.53abA 0.61aA 0.34cdA			0.35cdA	0.49 bcA	0.62abA	0.38cdA	0.49 bcB	0.79aA		
0.28dA 0.44bcA 0.65aA 0.32cdA 0.53abA 0.61aA 0.34cdA			0.40bcA	0.63aA	0.68aA	0.40bcA	0.56abAB	0.63aB		
			0.32cdA	0.53abA	0.61aA	0.34cdA	0.53abAB	0.56abB		

Table 4. Season 1 (2013–14): phosphorus (P) uptake, biomass per unit P uptake, yield per unit P uptake, P harvest index, grain P concentration and grain nitrogen (N): P ratio of winter with the season 1 (2013–14): phosphorus (P) uptake, biomass per unit P uptake, yield per unit P uptake, P harvest index, grain P concentration and grain nitrogen (N): P ratio of winter Table 4.	2013–14): phosph	10rus (P) uptak	e, biomass per u wheat	init P uptake, yi varieties grown	eld per unit P uj under different r	is per unit P uptake, yield per unit P uptake, P harvest index, g whost varieties grown under different nutrient and water invite	index, grain P	concentration a	and grain nitro	ogen (N):P rat	io of winter
Significance of treatments (T), varieties (V) and interaction (T × different (using Fischer's I.s.d. at $P = 0.05$): lower cas	nts (T), varieties (sing Fischer's 1.s.d	V) and interactic 1. at $P = 0.05$): lo	on $(T \times V)$ indicat wer case letters f	ed as: $*P < 0.05$;	**P < 0.01; ***P nong treatments, a	e of treatments (T), varieties (V) and interaction (T × V) indicated as: $*P < 0.05$; $**P < 0.01$; $n.s.$, not significant ($P > 0.05$). Means followed by the same letter are not significantly different (using Fischer's I.s.d. at $P = 0.05$): lower case letters for comparison among treatments, and upper case letters for comparison among varieties. Treatments are as in Table 1	ignificant $(P > 0)$. rs for compariso	05). Means follo on among variet	owed by the san ies. Treatments	ne letter are not are as in Table	significantly 1
Variety release date	Control	NIPI	N2P2	M1	MINIPI	M1N2P2	M2	M2N1P1	M2N2P2	dControl	dMNPK
				P uptake	<i>P uptake kg ha</i> ^{-1} (T***, V*, T × Vn.s.)	$^{*}, T \times Vn.s.)$					
1980	4.52gA	10.0fA	18.7deA	15.6eA	23.9bcdB	26.1 abcA	21.2cdA	26.8abA	30.6aA	3.80gA	20.2deA
2003	5.03fA	10.81eA	14.6deA	16.3dA	23.2bcB	25.0abA	19.1 cdA	28.1abA	30.2aA	4.14fA	25.5abA
2005	4.03eA	10.4dA	17.3cA	17.8cA	28.2bA	27.9bA	20.0cA	29.6bA	36.1aA	3.30eA	22.2cA
				Biomass per un	Biomass per unit P uptake (T***,	, V**, $T \times Vn.s.$)					
1980	644.7abA	724.4aA	632.7abA	415.6dB	491.9cdAB	550.1bcA	389.9dA	468.6cdB	458.5cdA	743.2aA	642.0bA
2003	644.9aA	686.7aA	730.2aA	475.2bcA	514.8bcA	526.0bA	401.7cA	511.4bcA	506.0bcA	746.4aA	637.5aA
2005	623.0bA	626.5bA	635.6bA	379.4dB	447.6cdB	518.5cA	381.8dA	461.5cdB	458.0cdA	769.7aA	634.9bA
				Yield per uni	<i>Yield per unit</i> P uptake $(T^{***}, V^{**}, T \times V^{**})$	V^{**} , $T \times V^{**}$)					
1980	248.4abB	282.2aA	231.8bB	167.1 deB	178.0cdeB	191.1cdB	147.1eB	162.5deB	149.6eB	250.8abB	215.2bcA
2003	296.1abA	318.3abA	344.9aA	227.3dA	242.8cdA	236.0cdAB	190.6dA	234.8cdA	221.3dA	331.4abA	282.9bcA
2005	266.6abAB	290.1aA	299.8aAB	167.5dB	203.1cdB	239.8bcA	165.4dB	217.2cA	210.7cdA	305.0aA	284.7abA
				P harvest	<i>P</i> harvest index $(T^{***}, V^{***}, T \times V^{**})$	$^{**}, T \times V^{**})$					
1980	0.87aA	0.87aA	0.85abA	0.70cdeB	0.76cdB	0.76cdB	0.64eB	0.71 cdeC	0.68deA	0.78 bcB	0.73cdA
2003	0.90 aA	0.89 abA	0.90abA	0.84abcdA	0.89 abA	0.83bcdAB	0.79cdA	0.85abcA	0.81cdA	0.83bcdA	0.78dA
2005	0.89 a A	0.87abA	0.87abA	0.71dB	0.81bcAB	0.86abA	0.69dAB	0.80 b c B	0.80bcA	0.84abcA	0.77cdA
				Grain P g	Grain P g kg ⁻¹ (T***, V***, T × Vn.s.)	*, $T \times Vn.s.$)					
1980	3.54cdA	3.10dA	3.68bcdA	4.24abA	4.27abA	4.02abcA	4.35abA	4.40aA	4.51aA	3.13dA	3.41cdA
2003	3.04cA	2.81cA	2.66cB	3.73abA	3.67abA	3.55bA	4.15aA	3.64abB	3.66abB	2.51cB	2.79cB
2005	3.37cdeA	3.04defA	2.94efAB	4.21aA	4.03abA	3.58bcdA	4.19aA	3.68abcB	3.82abcB	2.75fAB	2.72fB
				Grain N	Grain $N: P(T^{***}, Vn.s., T \times Vn.s.)$	$T \times Vn.s.$)					
1980	6.52bcA	6.23bcdA	6.02bcdA	3.91eA	4.78cdeA	5.76cdeA	3.96eA	4.39deA	4.62cdeA	9.14aA	7.82abA
2003 2005	6.17cdA 6.33cA	6.74bcA 6.27cA	6.50cA 6.05cA	3.65efA 3.59dA	4.46efA 3.28dB	4.77deA 4.64dA	3.06fB 3.64dAB	4.37efA 4.04dA	4.78deA 4.66dA	10.24aA 10.50aA	8.06bA 8.47bA

Nutrient uptake and allocation in wheat

Variety release date	Control	NIPI	N2P2	M1	MINIPI	M1N2P2	M2	M2N1P1	M2N2P2	dControl	dMNPK
				Р	uptake kg ha ⁻¹	$(T^{***}, V^*, T \times Vn.s.)$	1.S.)				
1970	5.33eA	9.22dA	16.8cA	18.8bcA	22.0bA	32.4aA	20.6bcA	33.6aB	31.3aAB	3.28eAB	19.9bcD
1980	5.33dA	8.46dA	19.5cA	16.9cA	26.5bA	26.8abA	20.9cA	28.7abB	32.4aAB	4.35dA	27.6abB
1993	3.71eA	10.8dA	20.4cA	16.9cA	27.1abA	27.5abA	19.8cA	21.7bcC	29.3aB	4.03eAB	23.1bcC
2003	6.35deA	9.06dA	18.3cA	15.4cA	25.0bA	33.4aA	19.4cA	31.5aB	31.3aAB	4.00eAB	25.2bBC
2005	4.43gA	11.0fA	19.5eA	18.3eA	21.8deA	26.4cdA	19.1eA	39.7aA	36.3abA	2.72gB	30.8bcA
				Biomass	s per unit P uptake (T***, V**,		$T \times Vn.s.$)				
1970	687.6bcdA	740.0bcA	829.1bA	446.5eA	581.3cdeA	551.2deA	476.23eA	466.9eB	581.1cdeA	999.6aA	676.1bcdA
1980	609.4cdA	776.8bA	675.6bcA	446.9eA	554.0cdeA	612.0cdA	410.6eA	512.2deB	552.1 cdeA	911.2aA	538.9cdeC
1993	659.1bcA	793.2abA	669.9abcA	452.0eA	527.7cdeA	607.6cdA	507.7deA	651.3bcdA	531.8cdeA	805.2aA	643.8cdAB
2003	626.1bcA	829.6aA	697.9bA	512.8cdA	597.2bcdA	541.8cdA	483.7dA	524.45cdB	546.2cdA	906.6aA	600.4bcdBC
2005	710.4abcA	821.8abA	675.0abcA	440.4deA	639.1 bcdA	601.3cdeA	432.7deA	406.9eB	502.6cdeA	873.1aA	567.9cdeC
					Yield per w	<i>Yield per unit P uptake</i> $(T^{***}, V^{**}, T \times V^{**})$	**, V**, T × V*	(*:			
1970	282.6bcdA	316.3abA	381.7aA	206.4eB	257.2bcdeAB	238.4cdeA	188.7eA	214.3deB	232.5deA	375.4aAB	305.7bcA
1980	267.5aA	349.6bA	298.0cA	181.4cB	212.8cB	231.8cA	189.5cA	198.2cB	200.9abA	327.6cB	207.8cC
1993	325.9abA	365.0aA	333.4abA	199.7fB	214.9efB	259.2cdeA	233.4cdefA	285.8bcA	225.3defA	375.5aAB	277.8bcdAB
2003	295.2cA	382.3abA	343.1bA	251.0cdeA	284.7cdA	249.9cdeA	224.1eA	233.6deB	223.4eA	410.1aA	283.2cdAB
2005	284.6cdA	358.1abA	318.0bcA	208.5eB	309.2bcA	279.3cdA	202.7eA	196.9eB	231.3deA	394.9aAB	251.4deB
					P harves	P harvest index (T***, V	$V^{***}, T \times V^{**}$				
1970	0.84abcA	0.85abA	0.84abcA	0.80cdA	0.86aA	0.82abcA	0.71eB	0.80bcdA	0.78dA	0.84abcAB	0.78dA
1980	0.88aA	0.86aA	0.87aA	0.74 bcB	0.78 bB	0.79bA	0.71cB	0.74 bcB	0.75bcA	0.79bB	0.72cC
1993	0.88aA	0.86abA	0.87abA	0.75deB	0.80cdAB	0.81bcA	0.74eAB	0.76cdeAB	0.75deA	0.87abA	0.75eB
2003	0.87aA	0.86abA	0.86abA	0.81bcdA	0.85abcAB	0.81cdeA	0.76eAB	0.77deAB	0.77deA	0.84abcAB	0.78deA
2005	0.84abA	0.86aA	0.86aA	0.82abA	0.82abAB	0.81abA	0.78bA	0.79abAB	0.80abA	0.87aA	0.77bA
				Ġ	Grain P g kg ⁻¹ (T**	"*, V***, $T \times V_{I}$	Vn.s.)				
1970	2.99bcA	2.73cdA	2.65cdAB	3.88aA	3.36abAB	3.47abA	3.80 aA	3.76aA	3.35abA	2.23dA	2.56cdC
1980	3.38abA	2.49cA	2.92bcA	4.09aA	3.66abA	3.44abA	3.86aA	3.75abA	3.76abA	2.43cA	3.47abA
1993	2.70bcA	2.37cA	2.61bcB	3.77aAB	3.73aA	3.15abA	3.27abA	2.75bcB	3.34abA	2.37cA	2.72bcBC
2003	3.03abcA	2.26deA	2.51 cdeB	3.28abB	3.03abcAB	3.24abA	3.41aA	3.30abAB	3.46aA	2.07eA	2.77bcdBC
2005	3.08bcA	2.41cdA	2.72bcdAB	3.96aA	2.71bcdB	2.97bcdA	3.88aA	4.01aA	3.47abA	2.20dA	3.08bcAB
					Grain $N: P$ (T***	*, Vns, $T \times Vn.s.$	·.				
1970	5.67bcdA	6.52bcA	4.73deA	3.69eAB	4.69deAB	4.93cdeA	3.66eA	4.22deAB	4.97cdeA	9.12aA	6.77bA
1980	5.16bA	6.86aA	6.53aA	3.83bA	3.73bB	4.83bA	4.14bA	4.31bAB	4.31bA	7.76aA	4.84bAB
1993	6.20abcA	6.63abA	5.50abcdA	3.95dA	4.19cdAB	4.84bcdA	5.00bcdA	5.40abcdA	4.95bcdA	7.32aA	6.23abcAB
2003	5.14abcA	5.83abA	6.16abcdA	3.65dAB	4.99cdAB	5.23bcdA	3.98bcdA	4.76abcdAB	4.69bcdA	8.65aA	6.38abcAB
2005	A bodeo A	5 514 4	5 20ho A			A 100 P					

index in both seasons, and for biomass per unit N uptake in 2014–15.

Interactions did not affect grain protein or N nutrition index. Nitrogen dilution curves may be influenced by wheat variety and growing condition (Hoogmoed and Sadras 2016). Therefore, we compared the N nutrition index calculated by using the N dilution curve reported by Justes *et al.* (1994), which is widely used, and a curve reported by Li *et al.* (2015), which was developed under an environment similar to that of our study and with variety Xiaoyan 22, released in 2003. The N nutrition index calculated with the Li *et al.* (2015) curve was higher than that obtained with the Justes *et al.* (1994) curve, but the ranking of varieties and treatments was similar (Supplementary material fig. 1, available at the journal's website).

Phosphorus traits

Treatment, variety and interaction effects on P traits are summarised in Table 4 (2013–14) and Table 5 (2014–15). Most traits responded to variety, except for biomass per unit P uptake in 2014–15 and grain N : P ratio in 2013–14. Interaction effects were found for yield per unit P uptake and P harvest index in both seasons and for P uptake in 2014–15.

Time trends in nitrogen and phosphorus traits

In order to elucidate the season-dependent responses and interactions outlined above, we adopted the framework of Sadras *et al.* (2016) to analyse changes in N and P traits resulting from selection for yield, using a relative scale as recommended by Fischer *et al.* (2014). The rate of change in yield varied with growing conditions; it was lowest in the unfertilised treatment and peaked at 0.83% year⁻¹ for crops receiving 135 kg N ha⁻¹. For our global analysis where the aim was to compare rates of change of different traits, we calculated rates for the pooled treatments because these were more robust

than for individual treatments (Fig. 1). Selection for yield increased yield at a rate of 0.46% year⁻¹, with no changes in the rate of nutrient uptake and hence a significant increase in the rate of yield per unit N and yield per unit P uptake (0.42%) and 0.40% year⁻¹, respectively). Further tests for individual treatments showed that the rate of change in N uptake with year of release was not different from zero for either the treatment with highest (P=0.32) and lowest (P=0.14) N supply. Likewise, the rate of change in P uptake with year of release was not different for zero for either the treatment with highest (P=0.08) and lowest (P=0.29) P supply. The P harvest index increased at a rate of 0.15% year-1, whereas there was no change in N harvest index. Concentrations of N and P in grain decreased at rates of 0.47% and 0.31% year⁻¹, respectively, whereas the N:P ratio in grain did not change over time. The N nutrition index did not change with year of variety release.

Next, we placed these findings in a broader context by comparing them with breeding systems worldwide (Fig. 2). Plots of rate of change in nutrient uptake *v*. rate of change in yield show two clusters. For Australia and for 0 kg N ha⁻¹ in Mexico, the points scatter around the y=x line, whereas for our data in China and for breeding systems in UK, Italy, Argentina and Mexico, the rate of change in yield has been larger than rate of change in nutrient uptake (Fig. 2*a*). The mismatch between the rate of change in nutrient uptake and the rate of change in yield per unit nutrient uptake in our study is then reflected in the shifts in grain nutrient concentration along the y=-x line in Fig. 2*b*.

Discussion

A previous review compared the rate of yield gain *v*. rate of change in N uptake, and the rate of change in grain N concentration *v*. rate of change per unit N uptake of diverse breeding systems (Sadras *et al.* 2016). Here we expanded the comparison in two aspects.

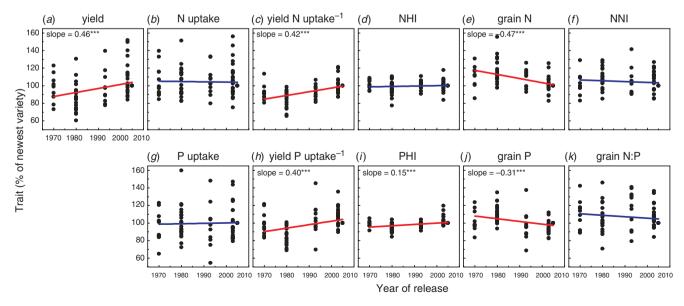
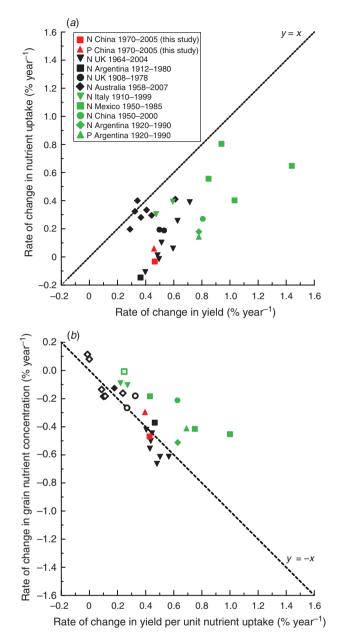



Fig. 1. Changes in yield and nutrient-related traits of wheat in China, in response to selection for yield. Data are pooled across growing conditions. NHI, Nitrogen harvest index; PHI, phosphorus harvest index; NNI, N nutrition index. Traits are relative to the newest variety (Fischer *et al.* 2014). ***P < 0.001: for significance of slope from least-square regression.

Fig. 2. Comparison of rates of change in wheat traits in response to selection for yield: (*a*) nutrient uptake *v*. yield; (*b*) grain nutrient concentration *v*. yield per unit nutrient uptake. In (*b*), open symbols indicate that rates of change in grain protein or phosphorus concentration are not different from zero, and solid symbols indicate significant rates (P < 0.05). Sources: Austin *et al.* (1980) (UK 1908–1978); Slafer *et al.* (1990) (Argentina 1912–1980); Calderini *et al.* (1995*a*) (Argentina 1920–1990); Calderini *et al.* (1995*b*) (Argentina 1920–1990); Ortiz-Monasterio R *et al.* (1997*a*) (Mexico 1950–1985); Ortiz-Monasterio R *et al.* (1997*b*) (Mexico 1950–1985); Giunta *et al.* (2007) (Italy 1910–1999); Barraclough *et al.* (2010) (UK 1908–1978); Sadras and Lawson (2013) (Australia 1958–2007); Tian *et al.* (2016) (China 1950–2000).

First, we included data for China, where breeding has improved yield at a rate of 0.46% year⁻¹ between 1970 and 2005 (Fig. 1*a*), and where fertiliser inputs have increased from 8.3 to 24.0 Mt N and from 2.2 to 8.3 Mt P between 1979 and 2012

(Zhang *et al.* 2015). Second, we expanded the comparisons to include P-related traits.

Shifts in nitrogen uptake and partitioning

Our data align with those for UK, Italy, Argentina and Mexico, where yield improvement was not accompanied by a proportional increase in N uptake or by improved partitioning of N to grain. This applied to both the pooled data and to the treatments with highest and lowest nutrient input. Selection for wheat in Australia remains the only reported case where the rate of improvement in N uptake matched the rate of increase in yield (Sadras and Lawson 2013; Sadras et al. 2016; Aziz et al. 2017). For wheat released in the UK between 1964 and 2000, the rate if change in N uptake was zero for crops fertilised with $0-200 \text{ kg N} \text{ ha}^{-1}$, and positive but smaller than the rate of yield increase for crops with 350 kg N ha⁻¹ (Barraclough et al. 2010). In Mexico, improvement in N uptake matched yield improvement in unfertilised crops, whereas yield increased faster than N uptake under heavy fertilisation (Fig. 2). Collectively, the increase in yield with no compensating changes in N uptake or allocation to grain led to a reduction in grain N concentration in our study. Increasing vield per unit nutrient uptake, a commonly used measure of efficiency, is thus achieved where yield, largely driven by grain number, increases faster than nutrient uptake, but at the expense of nutrient concentration in grain (Calderini et al. 1995b; Egle et al. 1999; Acreche and Slafer 2009; Foulkes et al. 2009; Tian et al. 2016).

The rate of change in grain nutrient concentration is tightly coupled with the rate of change in yield per unit nutrient uptake (Fig. 2b). To maintain N concentration in grain, the rate of increase in N uptake has to match the rate of yield gain (Sadras et al. 2016). A complementary view defines 'grain protein deviation' as the residual of the yield-protein relationship, and studies with winter wheat showed that grain protein deviation correlates with post-anthesis N uptake, thus allowing for improved grain yield and protein synchronously (Monaghan et al. 2001; Guttieri et al. 2015, 2017). To further improve wheat yield but maintain grain N concentration, either the N harvest index or N uptake, or both, must be improved (Barraclough et al. 2010). For the varieties under study, N harvest index was up to 0.8, suggesting limited scope for further improvement to 0.9 (Barraclough et al. 2010; Gorjanovic et al. 2011). Wheat breeding in China, we suggest, should focus on improving the ability of wheat to capture more N from soil. However, many factors influence N uptake and partitioning, including soil available N, and root and shoot traits (Semenov et al. 2007; Foulkes et al. 2009; Sylvester-Bradley and Kindred 2009; Barraclough et al. 2010, 2014). Root architecture can influence N acquisition, but root growth can be restricted by soil properties such as soil-water content, mechanical impedance or chemical constraints such as salinity (Clark et al. 2003; Ho et al. 2004; Sadras et al. 2005; Barraclough et al. 2010; Flavel et al. 2014). In winter-rainfall environments of south-eastern Australia, selection for yield increased crop N uptake and improved the N nutrition index of wheat despite a dramatic reduction in root-length density, more than compensated for by increased N uptake per unit root length (Sadras and Lawson 2013; Aziz et al. 2017). For the

combination of wheat genotypes and environments investigated by Guttieri *et al.* (2017), plant height and time to anthesis correlated genetically with N-use efficiency traits, and N-uptake efficiency increased in response to selection for yield. However, plant height did not change with year of release in Guan Zhong Plain between 1970s and 2010s (Sun *et al.* 2014; Wang *et al.* 2017). In *Arabidopsis*, the overexpression of TGA4 (Zhong *et al.* 2015) improved the nitrate transport and N assimilation and NLP7 enhanced the N and carbon assimilation (Yu *et al.* 2016).

Shifts in phosphorus uptake and partitioning

The P harvest index increased, but not enough to maintain P concentration in the grain driven by large rates of yield increase. Similarly for wheat released between 1920 and 1990 in Argentina, yield increase in the absence of improved P uptake reduced seed P concentration despite enhanced allocation to grain.

In our study, grain P decreased at a rate of 31% year⁻¹. Reserves of P in seed can favour seedling water uptake and vigour, and plant growth and reproduction (Radin and Matthews 1989; Henery and Westoby 2001), but large amounts of phytate-P may play negative roles in both human and monogastric nutrition, for example, by reducing bioavailability of zinc and iron (Raboy 2009; White and Broadley 2009; Veneklaas et al. 2012). Undigested P in manure represents a potential environment risk (Sharpley et al. 1994). For a given amount of P in grain, the proportion or activity of phytase can be reduced (Raboy 2007, 2009), but the trade-off between available P, seedling vigour and crop establishment needs attention (Yuan et al. 2017). Reducing the P concentration of grain by ~20% through breeding did not affect barley yield (Bregitzer and Raboy 2006). Phosphorus in seed should support seedling growth until the root system is established (White and Veneklaas 2012); for example, a rye (Secale cereale L.) seed with 151 mg P could support seedling growth for 15 days after germination (White 1993; White and Veneklaas 2012).

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

This study was financially supported by National Key Research and Development Program of China (2016YFD0200301). Mr Zheng Wang wishes to express his gratitude to China Scholarship Council and the South Australian Research and Development Institute for supporting his study in Australia. The Grains Research and Development Corporation supports Victor Sadras in his work on wheat.

References

- Acreche MM, Slafer GA (2009) Variation of grain nitrogen content in relation with grain yield in old and modern Spanish wheats grown under a wide range of agronomic conditions in a Mediterranean region. *The Journal of Agricultural Science* 147, 657–667. doi:10.1017/S0021859609990190
- Austin RB, Bingham J, Blackwell RD, Evans LT, Ford MA, Morgan CL, Taylor M (1980) Genetic improvements in winter wheat yields since 1900 and associated physiological changes. *The Journal of Agricultural Science* 94, 675–689. doi:10.1017/S0021859600028665

- Aziz MM, Palta JA, Siddique KHM, Sadras VO (2017) Five decades of selection for yield reduced root length density and increased nitrogen uptake per unit root length in Australian wheat varieties. *Plant and Soil* 413, 181–192. doi:10.1007/s11104-016-3059-y
- Barraclough PB, Howarth JR, Jones J, Lopez-Bellido R, Parmar S, Shepherd CE, Hawkesford MJ (2010) Nitrogen efficiency of wheat: Genotypic and environmental variation and prospects for improvement. *European Journal of Agronomy* 33, 1–11. doi:10.1016/ j.eja.2010.01.005
- Barraclough PB, Lopez-Bellido R, Hawkesford MJ (2014) Genotypic variation in the uptake, partitioning and remobilisation of nitrogen during grain-filling in wheat. *Field Crops Research* **156**, 242–248. doi:10.1016/j.fcr.2013.10.004
- Brancourt-Hulmel M, Doussinault G, Lecomte C, Be'rard P, Le Buanec B, Trottet M (2003) Genetic improvement of agronomic traits of winter wheat cultivars released in France from 1946 to 1992. *Crop Science* 43, 37–45. doi:10.2135/cropsci2003.3700
- Bregitzer P, Raboy V (2006) Effects of four independent low-phytate mutations on barley agronomic performance. *Crop Science* 46, 1318–1322. doi:10.2135/cropsci2005.09-0301
- Calderini DF, Dreccer MF, Slafer GA (1995*a*) Genetic improvement in wheat yield and associated traits. A re-examination of previous results and the latest trends. *Plant Breeding* **114**, 108–112. doi:10.1111/j.1439-0523.1995.tb00772.x
- Calderini DF, Torres-León S, Slafer GA (1995b) Consequences of wheat breeding on nitrogen and phosphorus yield, grain nitrogen and phosphorus concentration and associated traits. *Annals of Botany* 76, 315–322. doi:10.1006/anbo.1995.1101
- Clark LJ, Whalley WR, Barraclough PB (2003) How do roots penetrate strong soil? *Plant and Soil* 255, 93–104. doi:10.1023/A:1026140122848
- Egle K, Manske G, Römer W, Vlek P (1999) Improved phosphorus efficiency of three new wheat genotypes from CIMMYT in comparison with an older Mexican variety. *Journal of Plant Nutrition and Soil Science* **162**, 353–358. doi:10.1002/(SICI)1522-2624(199906)162:3<353::AID-JPLN353>3.0.CO;2-A
- FAO (2014) 'World Reference Base for soil resources (WRB).' (Food and Agriculture Organization of the United Nations; Rome)
- Fischer RA (1985) Number of kernels in wheat crops and the influence of solar radiation and temperature. *The Journal of Agricultural Science* 105, 447–461. doi:10.1017/S0021859600056495
- Fischer T, Byerlee D, Edmeades G (2014) 'Crop yields and global food security: will yield increase continue to feed the world?' (Australian Centre for International Agricultural Research: Canberra, ACT)
- Flavel RJ, Guppy CN, Tighe MK, Watt M, Young IM (2014) Quantifying the response of wheat (*Triticum aestivum* L.) root system architecture to phosphorus in an Oxisol. *Plant and Soil* 385, 303–310. doi:10.1007/ s11104-014-2191-9
- Foulkes MJ, Hawkesford MJ, Barraclough PB, Holdsworth MJ, Kerr S, Kightley S, Shewry PR (2009) Identifying traits to improve the nitrogen economy of wheat: Recent advances and future prospects. *Field Crops Research* 114, 329–342. doi:10.1016/j.fcr.2009.09.005
- Gastal F, Lemaire G, Durand J, Louarn G (2015) Quantifying crop responses to nitrogen and avenues to improve nitrogen-use efficiency. In 'Crop physiology: applications for genetic improvement and agronomy'. (Eds VO Sadras, DF Calderini) pp. 161–206. (Academic Press: San Diego, CA, USA)
- Giunta F, Motzo R, Pruneddu G (2007) Trends since 1900 in the yield potential of Italian-bred durum wheat cultivars. *European Journal of* Agronomy 27, 12–24. doi:10.1016/j.eja.2007.01.009
- Gorjanovic B, Brdar-Jokanovic M, Kraljevic-Balalic M (2011) Phenotypic variability of bread wheat genotypes for nitrogen harvest index. *Genetika* 43, 419–426. doi:10.2298/GENSR1102419G
- Guttieri MJ, Baenziger PS, Frels K, Carver B, Arnall B, Waters BM (2015) Variation for grain mineral concentration in a diversity panel of current

and historical great plains hard winter wheat germplasm. *Crop Science* 55, 1035–1052. doi:10.2135/cropsci2014.07.0506

- Guttieri MJ, Frels K, Regassa T, Waters BM, Baenziger PS (2017) Variation for nitrogen use efficiency traits in current and historical great plains hard winter wheat. *Euphytica* **213**, 87. doi:10.1007/s10681-017-1869-5
- Henery ML, Westoby M (2001) Seed mass and seed nutrient content as predictors of seed output variation between species. *Oikos* 92, 479–490. doi:10.1034/j.1600-0706.2001.920309.x
- Ho MD, McCannon BC, Lynch JP (2004) Optimization modeling of plant root architecture for water and phosphorus acquisition. *Journal of Theoretical Biology* 226, 331–340. doi:10.1016/j.jtbi.2003.09.011
- Hoogmoed M, Sadras VO (2016) The importance of water-soluble carbohydrates in the theoretical framework for nitrogen dilution in shoot biomass of wheat. *Field Crops Research* **193**, 196–200. doi:10.1016/j.fcr.2016.04.009
- Justes E, Mary B, Meynard JM, Machet JM, Thelier-Huche L (1994) Determination of a critical N dilution curve for winter wheat crops. *Annals of Botany* 74, 397–407. doi:10.1006/anbo.1994.1133
- Kitson R, Mellon M (1944) Colorimetric determination of phosphorus as molybdivanadophosphoric acid. *Industrial & Engineering Chemistry* 16, 379–383.
- Li ZP, Feng H, Song MD (2015) Critical nitrogen dilution curve and nitrogen nutrition index of winter wheat in Guanzhong Plain. *Transactions of the Chinese Society of Agricultural Machinery* 46, 177–273. [In Chinese]
- Moll RH, Kamprath EJ, Jackson WA (1982) Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization. *Agronomy Journal* **74**, 562–564. doi:10.2134/agronj1982.0002196200 7400030037x
- Monaghan JM, Snape JW, Chojecki AJS, Peter SK (2001) The use of grain protein deviation for identifying wheat cultivars with high grain protein concentration and yield. *Euphytica* **122**, 309–317. doi:10.1023/A:10129 61703208
- Ortiz-Monasterio R JI, Peñna RJ, Sayre KD, Rajara S (1997*a*) CIMMTY's genetic progress in wheat grain quality under four nitrogen rates. *Crop Science* **37**, 892–898. doi:10.2135/cropsci1997.0011183X003700 030032x
- Ortiz-Monasterio R JI, Sayre KD, Rajaram S, McMahon M (1997b) Genetic progress in wheat yield and nitrogen use efficiency under four nitrogen rates. *Crop Science* 37, 898–904. doi:10.2135/cropsci1997. 0011183X003700030033x
- Raboy V (2007) Seed phosphorus and the development of low-phytate crops. In 'Inositol phosphates: linking agriculture and the environment'. (Eds BL Turner, AE Richardson, EJ Mullaney) pp. 111–132. (CAB International: Wallingford, UK)
- Raboy V (2009) Approaches and challenges to engineering seed phytate and total phosphorus. *Plant Science* 177, 281–296. doi:10.1016/j.plantsci. 2009.06.012
- Radin JW, Matthews MA (1989) Water transport properties of cortical cells in roots of nitrogen and phosphorus-deficient cotton seedlings. *Plant Physiology* 89, 264–268. doi:10.1104/pp.89.1.264
- Sadras VO, Lawson C (2013) Nitrogen and water-use efficiency of Australian wheat varieties released between 1958 and 2007. *European Journal of Agronomy* **46**, 34–41. doi:10.1016/j.eja.2012.11.008
- Sadras VO, O'Leary GJ, Roget DK (2005) Crop responses to compacted soil: capture and efficiency in the use of water and radiation. *Field Crops Research* 91, 131–148. doi:10.1016/j.fcr.2004.06.011
- Sadras VO, Hayman PT, Rodriguez D, Monjardino M, Bielich M, Unkovich M, Mudge B, Wang E (2016) Interactions between water and nitrogen in Australian cropping systems: physiological, agronomic, economic, breeding and modelling perspectives. *Crop & Pasture Science* 67, 1019–1053. doi:10.1071/CP16027
- Semenov MA, Jamieson PD, Martre P (2007) Deconvoluting nitrogen use efficiency in wheat: A simulation study. *European Journal of Agronomy* 26, 283–294. doi:10.1016/j.eja.2006.10.009

- Sharpley AN, Chapra SC, Wedepohl R, Sims JT, Daniel TC, Reddy KR (1994) Managing agricultural phosphorus for protection of surface waters: Issues and options. *Journal of Environmental Quality* 23, 437–451. doi:10.2134/jeq1994.00472425002300030006x
- Slafer GA, Andrade FH, Feingold SE (1990) Genetic improvement of bread wheat (*Triticum aestivum* L.) in Argentina: relationships between nitrogen and dry matter. *Euphytica* 50, 63–71. doi:10.1007/BF00023162
- Sun Y, Wang X, Wang N, Chen Y, Zhang S (2014) Changes in the yield and associated photosynthetic traits of dry-land winter wheat (*Triticum* aestivum L.) from the 1940s to the 2010s in Shaanxi Province of China. Field Crops Research 167, 1–10. doi:10.1016/j.fcr.2014.07.002
- Sylvester-Bradley R, Kindred DR (2009) Analysing nitrogen responses of cereals to prioritize routes to the improvement of nitrogen use efficiency. *Journal of Experimental Botany* 60, 1939–1951. doi:10.1093/ jxb/erp116
- Tian Z, Li Y, Liang Z, Guo H, Cai J, Jiang D, Cao W, Dai T (2016) Genetic improvement of nitrogen uptake and utilization of winter wheat in the Yangtze River Basin of China. *Field Crops Research* **196**, 251–260. doi:10.1016/j.fcr.2016.07.007
- Veneklaas EJ, Lambers H, Bragg J, Finnegan PM, Lovelock CE, Plaxton WC, Price CA, Scheible WR, Shane MW, White PJ, Raven JA (2012) Opportunities for improving phosphorus-use efficiency in crop plants. *New Phytologist* 195, 306–320. doi:10.1111/j.1469-8137.2012.04190.x
- Wang Z, Sadras VO, Yang X, Han X, Huang F, Zhang S (2017) Synergy between breeding for yield in winter wheat and high-input agriculture in North-West China. *Field Crops Research* 209, 136–143. doi:10.1016/j. fcr.2017.04.018
- White PJ (1993) Relationship between the development and growth of rye (Secale cereale L.) and the potassium concentration in solution. Annals of Botany 72, 349–358. doi:10.1006/anbo.1993.1118
- White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets—iron, zinc, copper, calcium, magnesium, selenium and iodine. *New Phytologist* 182, 49–84. doi:10.1111/j.1469-8137.2008.02738.x
- White PJ, Veneklaas EJ (2012) Nature and nurture: the importance of seed phosphorus content. *Plant and Soil* 357, 1–8. doi:10.1007/s11104-012-1128-4
- Yang X, Li P, Zhang S, Sun B, Chen X (2011a) Long-term-fertilization effects on soil organic carbon, physical properties, and wheat yield of a loess soil. *Journal of Plant Nutrition and Soil Science* 174, 775–784. doi:10.1002/jpln.201000134
- Yang X, Yang Y, Sun B, Zhang S (2011b) Long-term fertilization effects on yield trends and soil properties under a winter wheat–summer maize cropping system. *African Journal of Agricultural Research* 6, 3392–3401.
- Yu LH, Wu J, Tang H, Yuan Y, Wang SM, Wang YP, Zhu QS, Li SG, Xiang CB (2016) Overexpression of *Arabidopsis* NLP7 improves plant growth under both nitrogen-limiting and -sufficient conditions by enhancing nitrogen and carbon assimilation. *Scientific Reports* 6, 27795. doi:10.1038/ srep27795
- Yuan F, Yu X, Dong D, Yang Q, Fu X, Zhu S, Zhu D (2017) Whole genomewide transcript profiling to identify differentially expressed genes associated with seed field emergence in two soybean low phytate mutants. *BMC Plant Biology* 17, 16. doi:10.1186/s12870-016-0953-7
- Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for the growth stages of cereals. *Weed Research* 14, 415–421. doi:10.1111/j.1365-3180.1974.tb01084.x
- Zhang W, Zheng C, Song Z, Deng A, He Z (2015) Farming systems in China: Innovations for sustainable crop production. In 'Crop physiology'. (Eds VO Sadras, DF Calderini)pp. 43–64. (Elsevier Inc.: San Diego, CA, USA)
- Zhong L, Chen D, Min D, Li W, Xu Z, Zhou Y, Li L, Chen M, Ma Y (2015) AtTGA4, a bZIP transcription factor, confers drought resistance by enhancing nitrate transport and assimilation in *Arabidopsis thaliana*. *Biochemical and Biophysical Research Communications* 457, 433–439. doi:10.1016/j.bbrc.2015.01.009