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Abstract.

This study assessed changes in nitrogen (N) and phosphorus (P) uptake and partitioning in response to selection

for yield in milestone varieties of Chinese winter wheat (7riticum aestivum L.). We established a factorial trial combining
11 nutrient-water regimes with three (2013—14) and five (2014—15) varieties released from 1970 to 2005. Grain yield
increased at a rate of 0.46% year ', with no apparent increase in the uptake of nutrients. Nitrogen harvest index did not
change, and P harvest index increased at a rate of 0.15% year '. Consequently, yield per unit N uptake and yield per unit
P uptake increased at similar rates (0.4% year ') at the expense of nutrient concentration in grain, which declined at a rate
of 0.47% year ' for N and 0.31% year ' for P. No trends in N nutrition index were found. Selection for yield in wheat
increased the yield per unit nutrient uptake at the expense of grain nutrient concentration. Further gains in yield need to
be matched by increasing N uptake to maintain grain protein. Dilution of P in grain needs to be considered in terms of
the putatively undesirable role of phytate for human nutrition, and the need for P reserves in seed for crop establishment.
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Introduction

Globally, wheat breeding has significantly increased grain yield
over the last five decades but at a declining relative rate (Fischer
etal. 2014). The impact of selection for yield on the nitrogen (N)
economy of wheat has been compared for breeding programmes
in Australia, UK, Italy and Argentina (Sadras et al. 2016). During
the last five decades in Australia, the rate of increase in N uptake
matched the rate of increase in grain yield, leading to unchanged
yield per unit N uptake. In addition, N harvest index (i.e. ratio of
N in grain to N in total biomass) and grain protein concentration
remained stable. By contrast, selection for yield of bread wheat
in UK and Argentina and selection for yield of durum wheat
in Italy did not increase N uptake, or where it did, the rate of
increase was lower than the rate of increase in grain yield.
Consequently, yield per unit N uptake increased while grain
protein declined (Sadras et al. 2016). Tian et al. (2016) found
similar results in China, when comparing cultivars developed
between the 1950s and 2000s; the rate of change in yield
(0.8% year ') was higher than the rate of increase in N uptake
(0.27% year V), leading to decreased grain N concentration. In
their experiment, however, crops where grown under two N rates
and a single phosphorus (P) rate, and interactions between variety
and N supply were not reported (Tian ef al. 2016). In France,
modern varieties had higher N uptake and N harvest index but
grain N concentration decreased compared with older varieties
(Brancourt-Hulmel ez al. 2003).
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Fewer studies have reported the effects of breeding for yield
on P uptake and allocation in wheat. In Argentina, breeding for
yield did not increase P uptake, hence the increase in yield
per unit P uptake. In addition, P harvest index increased but
at a low rate compared with yield, resulting in a decrease in grain
P concentration (Calderini et al. 1995b). Egle et al. (1999)
compared three new wheat varieties and one old variety
released by CIMMYT. The new varieties had higher P uptake,
while yield per P uptake improved slightly and grain P content
did not decline significantly.

Nitrogen and P have differences in their soil and crop
dynamics; therefore, it could be interesting to analyse the
N and P economies in past wheat selection (Calderini et al.
1995h). Here we report field experiments in two successive
seasons (2013—14, 2014-15) using three and five milestone
cultivars, respectively, of winter wheat (Triticum aestivum L.)
released between 1970 and 2005 in the Guanzhong region of
Shaanxi province, and grown under contrasting nutrient and
water supply in long-term fertiliser trials. The objective was to
investigate the uptake and allocation of N and P to grain in
response to variety, nutrient supply and their interaction.

Material and methods
Experimental design, varieties and environments

The experiments have been described in Wang et al. (2017) in
a paper focusing on yield. Here we summarise key aspects of the
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study, with emphasis on N and P. Briefly, the experiment
was conducted in Yangling, on the Guanzhong Plain, near the
southern edge of the Loess Plateau (34°17'51”N, 108°00'48"'E;
534m a.m.s.l.). Two long-term fertiliser experiments, which
are managed by the Chinese National Soil and Fertilizer
Efficiency Monitoring Base for Loessial Soil, provided the
background to this study. The history of fertilisation and crop
rotation in these experiments was reported previously (Yang
etal. 2011a, 2011b).

The soil is a silt clay loam (clay 32%, silt 52%, sand 16%)
Anthrosol with a terric horizon derived from manure and loess
material (FAO 2014). The experimental setup and growing
conditions have been described (Wang et al. 2017). Briefly,
the design was a split-plot with three replicates, where fertiliser
and water inputs were assigned to the main plot (Table 1) and
wheat varieties to the subplots. Varieties (and their release
dates) were Aifeng 3 (1970), Xiaoyan 6 (1980), Shaan 229
(1993), Xiaoyan 22 (2003) and Xinong 979 (2005). Varieties
had similar height and phenology (Wang et al. 2017). In
2013-14, we factorially combined three varieties (Xiaoyan 6,
Xiaoyan22 and Xinong 979) and 11 growing conditions. In
2014-15, we factorially combined all five varieties and 11
growing conditions.

Measurements

Soil samples were taken before fertiliser input at sowing by
using a hand auger to a depth of 200cm in 20-cm layers.
Nitrate-N was extracted from 4 g fresh soil with SOmL of 1m
KCL and was determined with an AutoAnalyzer3 (AA3; SEAL
Co., Germany) continuous flow analyser.

Crop phenology was monitored regularly by using the scale
of Zadoks et al. (1974). Shoots were sampled at anthesis
to determine the N nutrition index (sample area 0.25-0.5m?)
(Hoogmoed and Sadras 2016) and at maturity (sample area
0.5-5.8 m?) to determine biomass and nutrient content. Samples
were separated into organ components (leaf, stem and spike
at anthesis; leaf, stem, grain and chaff at maturity), which were
dried in a forced-air oven at 65°C for 36h, weighed, then
milled through a 1-mm sieve. Milled samples were digested

Table 1. Eleven growing environments from the combination of
nutrient and water inputs, and the nitrogen (N), phosphorus (P) and
potassium (K) application rates (kg ha") in each environment
Treatments from Control to M2N2P2 are irrigated; dControl and dMNPK are
rainfed; M, nutrients derived from manure. Table was published previously
(Wang et al. 2017)

Treatment Manure Fertiliser Total

N P K N P K N P K
Control 0 0 0 0 0 0 0 0 0
NI1P1 0 0 0 75 13 0 75 13 0
N2P2 0 0 0 120 26 0 120 26 0
Ml 75 31 34 0 0 0 75 31 34
MINIPI 75 31 34 75 13 0 150 44 34
MIN2P2 75 31 34 120 26 0 195 57 34
M2 120 50 55 0 0 0 120 50 55
M2NI1P1 120 50 55 75 13 0 195 63 55
M2N2P2 120 50 55 120 26 0 240 76 55
dControl 0 0 0 0 0 0 0 0 0
dMNPK 95 39 43 40 47 56 135 87 99

Z. Wang et al.

with concentrated sulfuric acid (98%) and hydrogen peroxide
(>30%). Nitrogen concentration was determined by micro-
Kjeldahl and P concentration by the vanadate—molybdate
method (Kitson and Mellon 1944). Uptake of N and P (grain+
straw) at maturity was calculated as a function of concentration
and biomass in different organs.

Data analyses

Following the definitions of Moll et al. (1982) and Gastal et al.
(2015), we calculated N uptake efficiency, N and P utilisation
efficiency, N and P harvest index, and N nutrition index.
Biomass and yield data used in the calculations were reported
previously (Wang et al. 2017). Nitrogen uptake efficiency
was calculated as the ratio between N uptake at maturity and
N supply in the soil calculated as the sum of initial nitrate-N in
soil and fertiliser (Table 1); mineralisation of N was not
measured. Nitrogen and P utilisation efficiency was calculated
as the ratio between yield and N or P uptake at maturity.
Nitrogen and P harvest indices were calculated as the ratio
between N or P in grain and total N or P uptake at maturity.
The N nutrition index was calculated as the ratio between actual
and critical N concentration in the shoot at anthesis, using the
N dilution curve for wheat reported by Justes et al. (1994).
Because this curve was derived for well-watered crops, we
restricted the calculation of the N nutrition index to our
irrigated treatments (Hoogmoed and Sadras 2016).

For each season, we used two-way analysis of variance
to assess the response of N- and P-related traits to treatment,
variety and treatment X variety interaction.

The rate of change in yield and N- and P-related traits was
calculated as the slope of the least-square linear regression
expressed as a percentage of the value of the latest released
variety for each treatment (Fischer et al. 2014; Sadras et al. 2016).

Results
Growing conditions

Environmental conditions during the experiment were
described in Wang et al. (2017). Briefly, seasonal precipitation
was 303 mmin2013—14 and 239 mmin 2014—15, compared with
57-year rainfall average (1957-2013) of 266 mm. No extreme
temperatures were apparent during the critical period of yield
determination from stem elongation to 10 days after flowering
(Fischer 1985). The combination of growing conditions and
treatments generated a yield range of 0.9-8.3tha ' during the
two experimental seasons (Wang et al. 2017).

Nitrogen traits

Treatment, variety and interaction effects on N traits in the
first and second season are summarised in Tables 2 and 3,
respectively. In both seasons, treatments affected N uptake per
unit available N and biomass per unit N uptake. Nitrogen uptake
per unit soil N responded to variety only in 2013—14; note,
however, that soil N did not include mineralisation, and this
might introduce bias, particularly in the treatments with manure.
Yield per unit N uptake, N harvest index and grain N responded
to variety in both seasons. Interaction effects were detected for
N uptake per unit soil N, yield per unit N uptake and N harvest
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index in both seasons, and for biomass per unit N uptake in
2014-15.

Interactions did not affect grain protein or N nutrition index.
Nitrogen dilution curves may be influenced by wheat variety
and growing condition (Hoogmoed and Sadras 2016). Therefore,
we compared the N nutrition index calculated by using the
N dilution curve reported by Justes et al. (1994), which is
widely used, and a curve reported by Li ef al. (2015), which
was developed under an environment similar to that of our study
and with variety Xiaoyan 22, released in 2003. The N nutrition
index calculated with the Li ez al. (2015) curve was higher than
that obtained with the Justes et al. (1994) curve, but the ranking
of varieties and treatments was similar (Supplementary material
fig. 1, available at the journal’s website).

Phosphorus traits

Treatment, variety and interaction effects on P traits are
summarised in Table 4 (2013-14) and Table 5 (2014-15).
Most traits responded to variety, except for biomass per unit
P uptake in 2014—15 and grain N : P ratio in 2013—14. Interaction
effects were found for yield per unit P uptake and P harvest index
in both seasons and for P uptake in 2014—15.

Time trends in nitrogen and phosphorus traits

In order to elucidate the season-dependent responses and
interactions outlined above, we adopted the framework of
Sadras et al. (2016) to analyse changes in N and P traits
resulting from selection for yield, using a relative scale as
recommended by Fischer et al. (2014). The rate of change in
yield varied with growing conditions; it was lowest in the
unfertilised treatment and peaked at 0.83% year ' for crops
receiving 135 kg N ha'. For our global analysis where the aim
was to compare rates of change of different traits, we calculated
rates for the pooled treatments because these were more robust
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than for individual treatments (Fig. 1). Selection for yield
increased yield at a rate of 0.46% year ', with no changes in
the rate of nutrient uptake and hence a significant increase in
the rate of yield per unit N and yield per unit P uptake (0.42%
and 0.40% year ', respectively). Further tests for individual
treatments showed that the rate of change in N uptake with
year of release was not different from zero for either the
treatment with highest (P=0.32) and lowest (P=0.14) N supply.
Likewise, the rate of change in P uptake with year of release
was not different for zero for either the treatment with highest
(P=0.08) and lowest (P=0.29) P supply. The P harvest index
increased at a rate of 0.15% year ', whereas there was no
change in N harvest index. Concentrations of N and P in grain
decreased at rates of 0.47% and 0.31% year ', respectively,
whereas the N : P ratio in grain did not change over time. The
N nutrition index did not change with year of variety release.

Next, we placed these findings in a broader context by
comparing them with breeding systems worldwide (Fig. 2).
Plots of rate of change in nutrient uptake v. rate of change
in yield show two clusters. For Australia and for 0kg N ha™'
in Mexico, the points scatter around the y=x line, whereas for
our data in China and for breeding systems in UK, Italy,
Argentina and Mexico, the rate of change in yield has been
larger than rate of change in nutrient uptake (Fig. 2a). The
mismatch between the rate of change in nutrient uptake and
the rate of change in yield per unit nutrient uptake in our study
is then reflected in the shifts in grain nutrient concentration
along the y=—x line in Fig. 20.

Discussion

A previous review compared the rate of yield gain v. rate of change
in N uptake, and the rate of change in grain N concentration v. rate
of change per unit N uptake of diverse breeding systems (Sadras
et al. 2016). Here we expanded the comparison in two aspects.
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Fig. 1.

Year of release

Changes in yield and nutrient-related traits of wheat in China, in response to selection for yield. Data are pooled across growing conditions.

NHI, Nitrogen harvest index; PHI, phosphorus harvest index; NNI, N nutrition index. Traits are relative to the newest variety (Fischer et al. 2014). ***P <0.001:

for significance of slope from least-square regression.
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Fig.2. Comparison of rates of change in wheat traits in response to selection
for yield: (@) nutrient uptake v. yield; (b) grain nutrient concentration
v. yield per unit nutrient uptake. In (), open symbols indicate that rates of
change in grain protein or phosphorus concentration are not different from
zero, and solid symbols indicate significant rates (P < 0.05). Sources: Austin
et al. (1980) (UK 1908-1978); Slafer et al. (1990) (Argentina 1912—1980);
Calderini et al. (1995a) (Argentina 1920-1990); Calderini et al. (1995b)
(Argentina 1920-1990); Ortiz-Monasterio R ef al. (1997a) (Mexico
1950-1985); Ortiz-Monasterio R et al. (1997h) (Mexico 1950-1985);
Giunta et al. (2007) (Italy 1910-1999); Barraclough et al. (2010) (UK
1908-1978); Sadras and Lawson (2013) (Australia 1958-2007); Tian et al.
(2016) (China 1950-2000).

First, we included data for China, where breeding has improved
yield at a rate of 0.46% year ' between 1970 and 2005 (Fig. 1a),
and where fertiliser inputs have increased from 8.3 to
24.0MtN and from 2.2 to 8.3 MtP between 1979 and 2012

Z. Wang et al.

(Zhang et al. 2015). Second, we expanded the comparisons to
include P-related traits.

Shifts in nitrogen uptake and partitioning

Our data align with those for UK, Italy, Argentina and Mexico,
where yield improvement was not accompanied by a proportional
increase in N uptake or by improved partitioning of N to grain.
This applied to both the pooled data and to the treatments with
highest and lowest nutrient input. Selection for wheat in Australia
remains the only reported case where the rate of improvement in
N uptake matched the rate of increase in yield (Sadras and
Lawson 2013; Sadras et al. 2016; Aziz et al. 2017). For wheat
released in the UK between 1964 and 2000, the rate if change in
N uptake was zero for crops fertilised with 0-200 kg N ha™', and
positive but smaller than the rate of yield increase for crops with
350 kg N ha ' (Barraclough ez al. 2010). In Mexico, improvement
in N uptake matched yield improvement in unfertilised crops,
whereas yield increased faster than N uptake under heavy
fertilisation (Fig. 2). Collectively, the increase in yield with no
compensating changes in N uptake or allocation to grain led to
a reduction in grain N concentration in our study. Increasing
yield per unit nutrient uptake, a commonly used measure of
efficiency, is thus achieved where yield, largely driven by
grain number, increases faster than nutrient uptake, but at the
expense of nutrient concentration in grain (Calderini et al. 1995b;
Egle et al. 1999; Acreche and Slafer 2009; Foulkes et al. 2009;
Tian et al. 2016).

The rate of change in grain nutrient concentration is tightly
coupled with the rate of change in yield per unit nutrient
uptake (Fig. 2b). To maintain N concentration in grain, the
rate of increase in N uptake has to match the rate of yield gain
(Sadrasetal.2016). A complementary view defines ‘grain protein
deviation’ as the residual of the yield—protein relationship, and
studies with winter wheat showed that grain protein deviation
correlates with post-anthesis N uptake, thus allowing for
improved grain yield and protein synchronously (Monaghan
et al. 2001; Guttieri et al. 2015, 2017). To further improve
wheat yield but maintain grain N concentration, either the
N harvest index or N uptake, or both, must be improved
(Barraclough ef al. 2010). For the varieties under study,
N harvest index was up to 0.8, suggesting limited scope for
further improvement to 0.9 (Barraclough et al. 2010; Gorjanovic
et al. 2011). Wheat breeding in China, we suggest, should
focus on improving the ability of wheat to capture more
N from soil. However, many factors influence N uptake and
partitioning, including soil available N, and root and shoot
traits (Semenov et al. 2007; Foulkes et al. 2009; Sylvester-
Bradley and Kindred 2009; Barraclough et al. 2010, 2014).
Root architecture can influence N acquisition, but root growth
can be restricted by soil properties such as soil-water content,
mechanical impedance or chemical constraints such as salinity
(Clark etal. 2003; Ho et al. 2004; Sadras et al. 2005; Barraclough
et al. 2010; Flavel et al. 2014). In winter-rainfall environments
of south-eastern Australia, selection for yield increased crop
N uptake and improved the N nutrition index of wheat despite
a dramatic reduction in root-length density, more than
compensated for by increased N uptake per unit root length
(Sadras and Lawson 2013; Aziz et al. 2017). For the
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combination of wheat genotypes and environments investigated
by Guttieri et al. (2017), plant height and time to anthesis
correlated genetically with N-use efficiency traits, and N-uptake
efficiency increased in response to selection for yield. However,
plant height did not change with year of release in Guan
Zhong Plain between 1970s and 2010s (Sun et al. 2014;
Wang et al. 2017). In Arabidopsis, the overexpression of
TGA4 (Zhong et al. 2015) improved the nitrate transport
and N assimilation and NLP7 enhanced the N and carbon
assimilation (Yu et al. 2016).

Shifts in phosphorus uptake and partitioning

The P harvest index increased, but not enough to maintain
P concentration in the grain driven by large rates of yield
increase. Similarly for wheat released between 1920 and
1990 in Argentina, yield increase in the absence of improved
P uptake reduced seed P concentration despite enhanced
allocation to grain.

In our study, grain P decreased at a rate of 31% year .
Reserves of P in seed can favour seedling water uptake and
vigour, and plant growth and reproduction (Radin and Matthews
1989; Henery and Westoby 2001), but large amounts of phytate-P
may play negative roles in both human and monogastric
nutrition, for example, by reducing bioavailability of zinc
and iron (Raboy 2009; White and Broadley 2009; Veneklaas
et al. 2012). Undigested P in manure represents a potential
environment risk (Sharpley et al. 1994). For a given amount of
P in grain, the proportion or activity of phytase can be reduced
(Raboy 2007, 2009), but the trade-off between available P,
seedling vigour and crop establishment needs attention (Yuan
et al. 2017). Reducing the P concentration of grain by ~20%
through breeding did not affect barley yield (Bregitzer and
Raboy 2006). Phosphorus in seed should support seedling
growth until the root system is established (White and
Veneklaas 2012); for example, a rye (Secale cereale L.) seed
with 151 mg P could support seedling growth for 15 days after
germination (White 1993; White and Veneklaas 2012).
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