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Abstract
Aims Try to detect the spatiotemporal dynamics and the
controlling factors of soil organic carbon (SOC) in the
North China Plain (NCP) over the last 30 years:
1980s-2010s.
Methods We investigated the SOC evolution by com-
piling data from 32 published papers during the last
30 years. Then we examined the spatial pattern and
controlling factors by analysing a two-period sampling
observations (1980s and 2010s) and multiple explana-
tory variables in four typical counties.

Results Over the last 30 years, the agronomy environ-
ment and management practice have been dramatically
improved, which have largely increased the crop yield
and subsequently enhanced the C input into the soil,
made NCP the most effective region for C sequestration
in China, ranging from 5.55±1.28 g kg−1 in the 1980s to
8.71±1.22 g kg−1 in the 2010s, with an average rate of
0.11 g kg−1 year−1. The SOC change (SOCC) exhibited
spatial heterogeneity due to imbalanced agricultural
management (i.e., rotation and irrigation) and environ-
mental obstacles (i.e., salinity and water deficit). The
mean SOCC rate in Fengqiu and Yucheng (>
+0.15 g kg−1 year−1, with rotation of winter wheat and
summer maize, less water deficit and salinity stress)
were significantly (P< 0.05) higher than that in
Nanpi (< +0.10 g kg−1 year−1, with water deficit) and
Kenli (< +0.10 g kg−1 year−1, cotton only, salinity stress).
Conclusions SOC may continue to increase in the NCP
through sustainable and efficient agricultural manage-
ment, especially in low-yield region. Soils in the NCP
will still act as a C sink well in the future.
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ASL above sea level
RMPs recommended management practices
MAT mean annual temperature
MAP mean annual precipitation.

Introduction

Soil is estimated as the largest organic C reservoir
in terrestrial ecosystems considering its huge soil
organic carbon (SOC) content (approximately 1550
Pg), which is two times the size of the atmospher-
ic pool and three times the size of the vegetation
pool (Lal 2004a). Small changes in the soil pool
can lead to large variations in atmospheric CO2

concentrations and can potentially release CO2 to
the atmosphere. Given the rising CO2 concentra-
tion in the atmosphere, more attention has been
attached to soil carbon sequestration due to its role
in greenhouse gas (GHG) emissions, as well as in
sustaining productivity, in ecosystem services, and
in the sustainability of the global earth system.
Cropland occupies 38 % of the earth’s land surface
(The World Bank 2012) and contains approximate-
ly 69–89 Pg of SOC globally (Jobbagy and
Jackson 2000; Lal 2004b). The great potential of
agricultural soil carbon sequestration has been
widely claimed by adapting the recommended
management practices (RMPs) (Lal 2002, 2004a).
The C restored in agricultural soils has been esti-
mated to reach 0.4–0.8/0.9 Pg yr−1 in the next 50–
100 years (IPCC 1996; Paustian et al. 1998; Smith
et al. 2007). The carbon storing capacity of agri-
cultural soils is meaningful for reducing CO2 emis-
sions on both a national and global scales
(Hutchinson et al. 2007).

The soil carbon dynamics of cropland are determined
by the balance of C inputs and outputs, which are both
influenced by natural and anthropogenic environmental
changes. Previous studies have proven that optimal
agricultural management practices can significantly af-
fect the SOC dynamics in multiple ways. For example,
irrigation and fertilizer application can enhance the SOC
content by improving the net primary production (NPP)
of the crops. In addition, agricultural machinery (com-
bine harvesters, rotary tiller and subsoiler, etc.) makes C
transfer more efficiently to the soil by returning crop
residues. However, the benefits of these agricultural

practices are highly dependent on the climate and soil
conditions for specific crop systems (Luo and Weng
2011; Smith et al. 1997). In the context of climate
change and its effects on NPP and heterotrophic respi-
ration, growing efforts have been made to investigate
the response of crop productivity and SOC to climatic
variables in croplands using different methods (moni-
toring data, yield data and modelling) (Lobell et al.
2008; Peng et al. 2004; Thomson et al. 2006), but the
results of these studies remain inconclusive (Ciais et al.
2011). For instance, global warming with an abundance
of precipitation would result in C sequestration through
improved photosynthesis, but it could also stimulate
microbial decomposition of SOM, and thus releasing
additional C to the atmosphere (Muller and Hoper 2004;
Vukicevic et al. 2001). Davidson and Janssens (2006)
noted that the inherently diverse nature of SOM and
environmental constraints obscured the responses of
SOC dynamics to warmer temperatures. Regardless of
the climate scenarios or the management practices, the
initial C content in soils negatively affects their C accu-
mulation (Goidts et al. 2009; Meersmans et al. 2011;
Saby et al. 2008; Thomson et al. 2006; Zhao et al. 2013),
because the rate and duration of C gain is determined by
the difference between the initial C content and satura-
tion level, called the saturation deficit (West and Post
2002; West and Six 2007).

Recent assessments of SOC changes on cropland
of China using meta-analysis, C inventory data or
modelling methods found that the SOC pool in
croplands has increased by 0.26–0.47 Pg from the
1980s to the 2000s (Huang and Sun 2006; Xie et al.
2007; Yu et al. 2009). They claimed the most im-
portant driving factors were the increasing C input
through improved land management practices (i.e.,
wide application of nitrogen fertilizer, irrigation area
expansion and increased mechanization) (Ju et al.
2009; Liu et al. 2014; Lu et al. 2009) and climatic
factors (i.e., temperature, precipitation, tropospheric
O3, and N deposition) (Ren et al. 2012; Yu et al.
2009), while Yu et al. (2009) asserted that improved
agricultural options are the major contributor.

The North China Plain (NCP) is the largest and most
productive agricultural region in China, covering a total
cropland area of 18 Mha, with a dominant crop system
of continuous winter wheat-summer maize dual-crop
rotations. More than half of the nation’s wheat and
one-third of its maize are supplied by this region
(Kendy et al. 2003). Due to thousands of years of

438 Plant Soil (2016) 403:437–453



conventional cultivation and an adverse environment
(e.g., floods, drought and salinity), one of the most
significant characteristics of soils in the NCP is low
organic C content (Thomson et al. 2006). It has been
challenging to find efficient practices that increase the
organic C in the soils of the NCP (Lu et al. 2014). A
recent study found the largest SOC increase occurred in
Fluvisols (+30.5 %) in China during the period from
1978 to 1982 to 2007–2008 (Yan et al. 2011), bur its
controlling factors were still unclear. As the most widely
distributed soil unit, the SOC dynamics of Fluvisols
(FAO taxonomy; f luvo-aquic, Genet ic Soi l
Classification of China) are essential for the sustainabil-
ity of agricultural productivity and food security in
China. Therefore, we employed data from multiple
sources trying to address the following objectives: 1)
to explore the spatial and temporal patterns of SOC
changes over the past three decades; 2) to detect the
driving or impeding factors that control the SOC se-
questration; 3) to propose adaptive management prac-
tices to meet future food security and climatic
challenges.

Materials and methods

Study area

North China Plain, also called Huang-Huai-Hai Plain,
with an area of 3.5×105 km2, is formed by the deposits
of the Yellow River and is the largest alluvial plain of
eastern Asia. Our study area focused mainly on its
northern part which divided by the Yellow River, in-
cluding Hebei province, northwest part of Shandong
province, Northern part of Henan province, Beijing
and Tianjin city (Fig. 1). The mean annual precipitation
(MAP) is 500–600 mm, 70–80 % of which fall in the
period from June to September (Fang et al. 2006; Liu
et al. 2010) as influenced by the monsoon. The mean
annual temperature (MAT) ranged from 2.0 °C in north-
ern Hebei to 14.3 °C in southern Henan (Chinese
Meteorological Administration, CMA). The majority
of this area is less than 50 m above sea level (ASL).
Fluvisols (FAO taxonomy; fluvo-aquic; Genetic Soil
Classification of China, GSCC) that developed in the
alluvial and coastal plains are the dominant soil group in

Fig. 1 Study area of Fluvisols in the North China Plain and four typical counties with their elevation
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the NCP. Four counties with high quality data records
during the past 30 years were chosen along a roughly
north to south transect. Fengqiu (FQ, 612.2 mm,
14.2 °C, 64.0 m) is situated in east Henan province,
Yucheng (YC, 565.2 mm, 13.3 °C, 15.4 m) and Kenli
(KL, 541.7 mm, 13.1 °C, 5.1 m) are in northwest
Shandong province, and Nanpi (NP, 532.7 mm,
12.8 °C, 9.6 m) is in east Hebei province (Fig. 1). The
SOC content dynamics of the croplands and their con-
trolling factors in 0–20 cm depths were detected from
the 1980s to the 2010s (Fig. 2).

SOC data

Data of SOC content (0–20 cm) in this study can be
divided into two subsets. One was collected from pub-
lished literature available at CNKI (http://www.cnki.
net/). These papers were screened by the following
criteria: 1) regional soil surveys or inventories (i.e.,
county scale or provincial scale) conducted in/
involving Fluvisols in the NCP from the 2nd NSS
(1980s) to 2012, 2) obtainable SOC, SOM content or
SOC stock coupled with bulk density and depth, and 3)
SOM measurements were consistent with that used in
the 1980s. Following these criteria, more than 70,000
observations were compiled from a total of 32 publica-
tions. For the graphically illustrated data, figures were
digitized using Engauge Digitizer software (Free
Software Foundation, Inc., Boston, MA, USA). All data
collected from papers was converted to SOC content for
further statistical analysis. This data set was employed to
detect the temporal evolution of SOC in the topsoil (0–

20 cm). We defined the SOC change (SOCC) as the
difference between the initial and final values in the
reported period. SOC changes often depend on the
baseline SOC values, and the relative change in the
baseline may better reflect the SOC change under cli-
mate change and land usemanagement (Pan et al. 2010),
Similar to Bellamy et al. (2005), we utilized the SOCC
rate (g kg−1 year−1) to trace SOC dynamics, which is
calculated using the following equation:

SOCC rate ¼ SOCt−SOC0ð Þ=t ð1Þ

where SOC0 is the initial SOC content (g kg−1) at the
beginning of the soil survey and SOCt is the final SOC
content t years after the initial soil survey.

The second subset consists of 807 soil profiles in four
typical counties (Fig. 1). These data were analysed from
two soil sampling campaigns conducted in the 1980s
(2nd NSS) and 2010s (2009–2010), of which 524
obervations were originated from the specific county-
scaled soil monographs. These monographs contain de-
tailed environmental descriptions of the soil profile,
such as the location, vegetation type, land use, soil
colour, SOM content, soil texture, soil water retention
capacity, and some chemical properties (i.e., content of
N-P-K, pH, EC) from 1979 to 1986. All of the data were
synthesized using hundreds of plot-specific measure-
ments calculated according to their soil types or land
use types on the basis of the soil-unit maps of each
county with a scale of 1:50,000. The remaining 283
observations were derived from our regional cropland
soil survey of northern China. We selected 14 typical

Fig. 2 Dynamics of the soil
organic carbon (SOC) content
from the 1980s to the 2010s for
cropland across the North China
Plain (NCP). Data were extracted
from published literature on the
same soil unit (references in
Table S1)
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counties in northern China and conducted a soil resam-
pling campaign during 2009 and 2010. In June and July
before fertilization, we set evenly distributed 72 plots in
each county, including 48 two-layer (0–20 cm and 20–
40 cm) plots and 24 soil profiles (depth>=100 cm)
according to the soil categories, paedogenesis and land
uses and considering the morphology, management
practices and the amount of crop biomass, In each plot,
three subplot samples of each layer were mixed for soil
physical and chemical analysis in the laboratory. The
soil samples were air-dried, sieved through a
2-mm mesh, and handpicked to remove plant detritus
before analysis. The SOM was obtained by the wet
oxidation method as described by Lu (1999), which is
consistent with the measurement used in the 2nd NSS, a
factor of 1.1 was used in order to correct for incomplete
C oxidation. The SOC content was converted from the
SOM using a Bemmelen index of 0.58. This SOC
dataset was used to compare the 1980s and 2010s on
the county and site levels. To make a site-to-site com-
parison, we matched the two-period sampling sites by
Kriging interpolation. Specifically, considering the sam-
pling density and soil heterogeneity of the two periods,
we interpolated data from the 2nd NSS of each county to
generate a spatial distribution of the SOC content. We
firstly used Kolmogorov-Smirnov Test to check the
normality of our data. During spatial interpolation, a
semivariogram was constructed to explore spatial de-
pendence in the underlying variable (Cressie 2015).

Three types of semivariance models (i.e., Gaussian,
Exponential, and Spherical) were tested to explore the
relationship between the semivariance and the distance
for SOC content in the 1980s. All semivariograms were
optimized to obtain the best fitness between models and
data. The final form of the theoretical variogram model
was selected based on the results of a validation scheme
(Cross-validation procedure). The prediction perfor-
mance of Kriging was evaluated by comparing observed
and estimated value. The exponential model was even-
tually adopted on the basis of the criteria that mean
errors between the predicted and measured values was
closest to zero, and our data in the 1980s was interpo-
lated to the 1 km×1 km grid for each county, we then
calculated the SOC change by comparing the actual
observations during the resampling campaign (2010s)
with the extracted ones from the spatial interpolation of
the 1980s.

Explanatory variables

Annual organic carbon (OC) input to soil: As the
importance of OC input for the SOC accumulation,
we calculated the annual total OC input from
wheat and corn residues after harvest. According
to the method of Johnson et al. (2006) and
Bolinder et al. (2007), we divided NPP carbon
content into three fractions (g m−2 years−1). The
equations we used as follows:

NPPC ¼ CG þ CS þ CR; where
CG ¼ YP � 0:4 að Þ
CS ¼ YP � 0:4ð Þ = k1 bð Þ
CR ¼ YP � 1þ k1ð Þ= k1 � k2ð Þ cð Þ

8
<

:
ð2Þ

Where NPPc is the OC content from net primary pro-
ductivity, CG,Cs and CR means OC from grain yield,
straw and root with its rhizodeposit, respectively. The
amount of C in each of these fractions can be estimated
from agricultural grain yields, using published or as-
sumed values for grain to straw ratios (k1=grain/straw),
and aboveground biomass to belowground biomass ra-
tios (k2= aboveground biomass C/belowground bio-
mass C, here belowground biomass C include root C
and rhizodeposit C), and C concentrations in the plant
parts. YP is the dry matter yield of grain yield (g m−2

years−1). The grain yield data were compiled from agri-
cultural statistical yearbook of Beijing, Tianjin, Hebei,

Shandong and Henan province, respectively. As we use
wheat and maize only, we assumed the C concentration
of all plant parts is 400 g kg−1.

In fact, the portion of the fractions returned into the
soil varied with time, for which we introduced the
parameter S to account for it. Typically, by default:
SG=0, Ss changed with different periods (Table S3 in
detail). SR= 1 (Where SG, Ss and SR are the pro-
portions of C in grain yield, straw, and root-
derived C, respectively).

C1 ¼ CG � SG þ CS � SS þ CR � SR ð3Þ
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Where Ci is the annual OC input to soil (g m−2),
which is the sum of wheat and corn of the year.

Climate data: Mean annual temperature (MAT) and
precipitation (MAP) from 1978 to 2010 were calculated
using the data from 603 meteorological observation
stations of the Chinese Meteorological Administration
(CMA). The trend in the inter-annual change (as change
per year) of these climatic variables was determined
using Sen’s nonparametric method (Gilbert 1987) by
an excel template MAKESENS (developed by salmi
et al. 2002, http://en.ilmatieteenlaitos.fi/makesens).
Sen’s method was used for cases in which the trend was
assumed to be linear. The equation can be expressed as:

f tð Þ ¼ Qt þ B ð4Þ
where t is time, f (t) is the value in t, Q is the slope, and B
is a constant. To obtain Q in Eq. (4), we first calculated
the slopes of all data value pairs:

Qi ¼ x j−xk
� �

= j−kð Þ ð5Þ
where j>k.

If there are n values of xj in the time series, we obtain
as many as N=n(n-1)/2 slope estimates Qi. The Sen’s
estimator of slope is the median of these N values of Qi.
The N values ofQiwere ranked from smallest to largest,
and the Sen’s estimator is

Q ¼ Q N þ 1ð Þ½ �; if N isodd

or

Q ¼ 1

2
Q N=2½ � þ Q N þ 2½ �ð Þ; if N iseven ð6Þ

A 100× (1-α)% two-sided confidence interval about
the slope estimate was obtained by a nonparametric
technique based on the normal distribution (Salmi et
al. 2002). The method is valid for n as small as 10 unless
there are many ties. The changing trend ofMATover the
past 32 years was named MAT_Q, with MAP_Q for
MAP.

Topographical parameters: Based on the Digital
Elevation Model (DEM) provided by The Shuttle
Radar Topography Mission (SRTM, http://srtm.csi.
cgiar.org/SELECTION/inputCoord.asp) with a
resolut ion of 90 m, different topographic
parameters were calculated (Wilson and Gallant
2000) using ArcGIS 10.1 software (ESRI Inc.,
Redlands, CA). Primary terrain attributes, slope
and curvature were obtained. The topographic

wetness index (TWI) served as secondary param-
eters. The TWI was calculated using the follow-
ing equation:

TWI ¼ In SCA=tanað Þ ð7Þ

where SCA is the specific contributing area and α
is the slope. The TWI is a topographic variable
that reflects the potential soil moisture conditions
(Beven and Kirkby 1978; Sorensen 2004).

Soil texture: Soil texture was determined by wet
sieving and sedimentation according to the method of
Köhn (Gee and Bauder 1986). Soil texture was deter-
mined using the sieve-pipette method (Pansu and
Gautheyrou 2003) with three particles divisions: sand
(0.05–2 mm), silt (0.002–0.05 mm) and clay
(<0.002 mm).

Agricultural management practices: We collected
county-scale agronomy data, including the grain yield
(kg ha−1), fertilizer application per hectare (kg ha−1),
irrigation area ratio (irrigated area/total area of
cultivated land), and machine harvest ratio (machine
harvest area/total area of cultivated land) from
statistical yearbooks for each province (Hebei,
Shandong, Henan) from 1978 to 2008. We further
calculated the increasing rate of grain yield using
Sen’s method as in Eq. (5). We also used the crop
rotation system of each sampling site. The crop
rotation is a nominally scaled parameter. According
to the different water resources for irrigation, we
divided the sites into two parts, one from the Yellow
River and the other one from the Hai River.

Soil chemical properties: These included the follow-
ing: initial SOC content, soil total nitrogen (STN) con-
tent in the 1980s derived from soil monographs of each
county, C/N ratio, and soil salt content in the 2010s
compiled from soil re-sampling campaigns.

Uncertainty analysis

As conditional stochastic simulations are suitable to
assess spatial uncertainty by generating multiple alter-
native estimations while honoring the spatial structure
of the sample data. We conducted an uncertainty analy-
sis to account for the potential errors of Kriging inter-
polation usingMonte-Carlo method (Brandimarte 2014:
Ogle et al. 2003; Phillips and Marks 1996; Yang et al.
2012). Monte Carlo method can generate multiple re-
sults based on randomly selection of values from
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probability density functions (PDFs) (Ogle et al. 2003;
Smith and heath 2001). According to the sampling
locations in the 2010s, we extracted its corresponding
Kriged estimate and estimation variance for the period
of 1980s from the grid. As each grid has a distribution
with the mean and standard deviation (SD) equal to the
Kriged estimate and the square root of the estimation
variance, respectively, we did a random sampling from
the normal distribution for each corresponding site in the
1980s. By using the sampled values we calculated the
average values for the counties in the 1980s and also for
the difference between two sampling periods. Above
processes were repeated 10000 times to estimate the
mean value and obtain the 2.5 and 97.5 percentiles as
a description of uncertainty (i.e., 95 % confidence
interval).

Statistical analysis

Descriptive statistics describe the soil data sets including
mean, minimum and maximum values, median, inter-
quartile range, outliers, skewness and kurtosis. The sig-
nificance of the differences in SOC contents between the
1980s and the 2010s for each county was tested with a
t-test procedure for each county. Differences in the SOC
changes in the four counties were tested with analysis of
variance (ANOVA) using the SAS 9.3 statistical pack-
age (SAS Institute Inc. 2011). Statistical significance
was determined at the 95 % confidence level at p<0.05.

As the hierarchical sampling strategy adopted for the
four specific counties, we chose a linear mixed model
(LMM) to explore the driving factors in soil organic
carbon changes over the last 30 years. An LMM is a
parametric linear model for clustered or repeatedly

measured data; these models are linear in their parame-
ters, and the covariates, or independent variables, and
may involve a mix of fixed and random effects (Brady
et al. 2007). The data in an LMM can be correlated and
the variability is not necessarily constant. LMMs have
been used to model the SOC dynamics in a hierarchical
sampling structure (Goidts et al. 2009; Maia et al. 2010;
Suuster et al. 2012) and have a high prediction accuracy
(Suuster et al. 2012). In our study, the SOC changes at
all soil sampling sites were set as response variables.
The four counties were considered as random effects in
the model. The explanatory variables used as fixed
effects were the agricultural management practices
(i.e., crop rotation and irrigation resource), the initial
soil physico-chemical properties (i.e., soil texture,
SOC, STN, and C/N ratio in the 1980s), the topographic
parameters (i.e., ASL, slope, curvature, and TWI), and
related climatic parameters (i.e., mean annual tempera-
ture and its change rate, and mean annual precipitation
and its change rate) (Table 1). The explanatory variables
involved two category variables, such as the crop rota-
tion and irrigation water source, and the rest were con-
tinuous variables (Table 1). After modelling, a 10-fold
cross-validation method was used for model validation.
The mean error (ME) and the root mean square error of
prediction (RMSEP) were calculated to assess themodel
performance. This statistical analysis was realized using
Bnlme^ (Pinheiro et al. 2014) and BDAAG^ packages
(John and Braun 2014) in R 3.1.2 (R Core Team 2014).

A multiple linear regression model (stepwise) was
used to clarify the variables driving the SOCC on a
regional scale. Explanatory variables were the grain
yield increase rate (Yield_increase), the initial SOC
values and related climatic variables, such as MAT,

Table 1 Variables used in the linear mixedmodels performed at the site level and multiple linear regression analysis performed at the county
scale

Method Dependent variable Explanatory variables

Continuous Categorical

Linear mixed models SOCC SOC_1980, STN_1980, C/N_1980, ASL,
Salt, Slope, Curvature, TWI, Sand, Silt,
Clay, MAP_Q, MAT_Q

Rotation, Irrigation_resource

Multiple linear regression SOCC rate SOC_1980, Yield_increase, MAP, MAT,
MAT_Q, MAP_Q

SOC_1980, SOC content in the 1980s (g kg−1 ); STN_1980, soil total nitrogen in the 1980s (g kg−1 ); C/N_1980, C-to-N ratio in the 1980s;
ASL, above sea level (m); Salt, soil salt content in 2010 (%); Slope, the slope of the land surface; TWI topographic wetness index,Curvature
curvature of the land surface, Sand, Silt, and Clay, particle content of soil (%); MAT mean annual temperature (°C); MAP, mean annual
precipitation (mm);MAT_Q annual rate of change ofMAT (°C),MAP_Q annual rate of change ofMAP (mm), Rotation crop rotation system
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MAP, MAT_Q, and MAP_Q. The dependent variable
was the SOCC rate. Before the model was carried out, a
correlation analysis was conducted among these vari-
ables to detect their relationships. This statistical analy-
sis was realized using SAS 9.3 (SAS Institute Inc.
2011).

Results

SOC dynamics from the 1980s to the 2010s in the NCP

We collected published articles that focused on the SOC
dynamics or agricultural soil fertility monitoring over
multiple time scales ranging from 8 to 30 years. The
SOC content shifted from 5.55±1.28 g kg−1 during
1977–1982 to 8.71±1.22 g kg−1 during 2008–2012.
Taking 30 years as a time span, the change rate of
SOC content was 0.11 g kg−1 year−1, indicating that

the SOC content had been enhanced with high efficien-
cy under the entire regional soil cover of the NCP over
the last 30 years.

Asynchronous increase in the SOC content in the four
typical counties

The right-shifted frequency distribution of the observa-
tions from the 1980s to the 2010s (Fig. 3), with the
median ranging from 4.09 (min 0.65-max 9.12) to 9.20
(2.69–20.41) g kg−1 in FQ, 5.08 (2.19–8.03) to 9.80
(4.24–13.70) g kg−1 in YC, 5.02 (2.85–24.77) to 7.55
(9.15–12.68) g kg−1 in NP, and 4.79 (0.98–6.81) to 7.10
(1.87–12.55) g kg−1 in KL, revealing an increasing trend
in the organic carbon content of cropland topsoil
in these four counties during the past three de-
cades (p < 0.05) (Fig. 3).

The SOC contents were low on average (<5 g kg−1)
in the four counties in the 1980s (Table 2). While in the

a b

c d

Fig. 3 Frequency distribution of soil organic carbon (SOC)
changes across four counties over the two sampling periods from
the 1980s to the 2010s in (a) Fengqiu (FQ), (b) Yucheng (YC), (c)
Nanpi (NP), and (d) Kenli (KL). The inset in each panel shows an
overall comparison of the SOC content between the two periods.

Letters denote the significance of the difference between them at a
significance level 0.05. (N number of sampling points; SD: stan-
dard deviation; mean: average value of SOC content in each
sampling period)
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2010s, the SOC content varied from 5.76 g kg−1 in KL
to 9.61 g kg−1 in FQ (Table 2). Consequently, FQ and
YC had a higher rate of SOCC, more than 0.15 g kg−1

year−1, while NP and KL were at a low level that less
than 0.10 g kg−1 year−1 (p<0.05) (Table 2). Compared
to the historical sampling sites, 95.7 % of the contem-
porary SOC have increased linearly in FQ with a slope
of 2.24 (r2 =0.87, p<0.001), an increase of 98.6 % was
found in YC with a slope of 1.89 (r2 =0.93, p<0.001),
an increase of 91.4 % with 1.55 (r2 =0.93, p<0.001) in
NP, and an increase of 73.2 % with 1.23 (r2 = 0.79,
p<0.001) in KL (Fig. S1). As a consequence, the SOC
change showed a spatial heterogeneity across this area
from the 1980s to the 2010s.

Controls on topsoil SOC change in the last 30 years

The amount of annual OC input into the soil increased
by 148 % from 439±31 g m−2 in the first period (1978–
1982) to 1090±169 g m−2 in the recent period (2004–
2008). The synchronous dynamic between the SOC
content and the OC input in the croplands indicating
that SOC accumulated in the NCP might mainly derive
from the increase in OC input in the last three decades.

The linear mixedmodel showed that only a small part
of variables (<=4) remained significant (p<0.05) when
modelling the change in SOC at the sampling-site level
(Table 3). The clay fraction and the crop rotation system
had positive effects on the change in SOC. The SOC
accumulation rate of cropland with wheat-maize rota-
tion were significantly higher (p<0.01) than that with
annual cotton system. However, the initial value in the
1980s (SOC_1980) and the mean annual temperature
change (MAT_Q) had negative effects on the SOCC.
These fixed factors in the model alone can explain 31 %

of the variation of the SOCC during the last 30 years.
The model performed well (RMSEP=2.48 g kg−1) by
checking with k-fold validation method (k = 10)
(Fig. 4a) (Fig. 5).

Correlation matrices were calculated to identify the
parameters related to the SOCC at the county level
(Table S2). Generally, strong correlations (p<0.01)
were found between SOCC and the grain yield enhance-
ment rate (Yield_increase, r=0.79), the initial value in
the 1980s (SOC_1980, r=−0.55), and mean annual
temperature change (MAT_Q, r=−0.70). However, for
detecting the driving factor of the SOCC, the only
parameter remained was Yield_increase after the step-
wise linear regression at a significance level of p<0.05
(Table 4), while the SOC_1980 and MAT_Q were mar-
ginally significant (p<0.15) in the model. All of these
values were at the county level. The multiple linear
regression resulted in an adj-R2 of 0.73 (p<0.001).
The grain yield enhancement rate per hectare of the
county corresponded well to its SOCC over the past
three decades, of which the partial R2 of the model
was 0.62 (Table 4).

Discussion

SOC evolutions during the last 30 years

Numerous studies have demonstrated that SOC seques-
tration was influenced by extra organic C input, but the
magnitude and even the direction of this response varied
among studies.We found that SOC content increased by
56.9 % (from 5.55 to 8.71 g kg−1) together with organic
C input during the last 30 years in the NCP (Fig. 2).
Similarly, Cai and Qin (2006) and Liu et al. (2014)

Table 2 Soil organic carbon (SOC) content (0-20 cm) and its changes among the four typical counties during the last 30 years from 1980s to
2010s

County SOC1980s (g kg−1) SOC2010s (g kg−1) SOCC (g kg−1) SOCC rate (g kg−1 year−1)

FQ 4.08[3.72,4.46] b 9.61[8.69,10.52] a 5.52[5.15,5.88] a 0.18[0.17,0.20] a

YC 4.92[4.77,5.07] a 9.41[8.77,10.04] a 4.49[4.34,4.64] b 0.15[0.14,0.15] b

NP 4.96[4.91,5.16] a 7.71[7.09,8.33] b 2.75[2.70,2.80] c 0.09[0.09,0.09] c

KL 4.21[4.06,4.36] b 5.76[5.14,6.37] c 1.52[1.37,1.69] c 0.05[0.05,0.06] c

Values in parenthesis denote 95 % confidence intervals (g kg−1 ) of the means estimated by Monte-Carlo approach (10000 simulations),
which is used to quantify uncertainties derived from spatial interpolation for the period 1980s. While the intervals that for the 2010s were
calculated by our sampling measurements during the 2010s. SOC1980s and SOC2010s denote SOC content of the two sampling periods,
respectively; different letters indicate significant difference between them (a = 0.05)
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demonstrated a significant linear relationship between
organic C input and SOC content based on a meta-
analysis of 176 published studies on straw return.
Since the BReform and Opening up^ strategy of China
in 1978, the increase in chemical fertilization and

improved agro-management practices (Table S4) have
led to dramatic increase of crop yield over the last three
decades. Additionally, with improved living conditions
and ban of the straw burning, much of the residues were
returned to the field rather than used as fuel or feed for

Table 3 Results of the type III tests of fixed effects from the linear mixed effect model

Variable Estimate Std.Error numDFe denDF F-value t-value p-value adj.R2 conditionala MEb RMSEPc

(Intercept) 5.62 1.55 1 273 587.61 3.61 <0.00 0.31 <0.00 2.48

Clay 0.09 0.02 1 273 29.59 4.92 <0.00

Rotationd 3 273 24.73 <0.01

RotationO 1.08 0.79 1.15 0.17

RotationWM 2.06 0.62 3.08 <0.00

RotationWMC 0.75 0.66 0.96 0.33

SOC_1980 −0.58 0.16 1 273 15.39 −3.12 <0.00

MAT_Q −79.06 29.88 1 273 7.83 −2.80 <0.01

a adj.R2 conditional, R2 of the model without random effects
bME mean error expressed in g kg−1 for the change in SOC
cRMSEP root mean square error of prediction calculated on the cross-validation sets after the model calibration with the data. RMSEP is
expressed in g kg−1 for the change in SOC
dRotation RotationWMC, annual wheat or maize with cotton; RotationWM, dual-crop system of wheat-maize rotation; RotationO, other
plants (i.e., vegetation)
e numDF, denDF The F distribution is the ratio of two estimates of variances. Therefore it has two parameters, the degrees of freedom of the
numerator (numDF) and the degrees of freedom of the denominator (denDF)

a b

Fig. 4 Validation results for themodelling of the change in SOC at the site level (a) and in the SOCC rate on a county level (b). RMSEP, root
mean square error of prediction (in g kg−1 for the SOCC and g kg−1 year−1 for the SOCC rate)
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domestic livestock in the early 1980s (Cai and Qin
2006). Furthermore, C input (crop residues) enhances
soil nutrient availability. Even in small quantities, resi-
dues can be a long-term complement for the nutrient
supply and in turn simulate C sequestration due to
increased crop rhizodeposition (Kuzyakov and
Schneckenberger 2004). So, the agricultural policy
(i.e., subsidy, food price, etc.) and enhanced crop yield
due to improved management practices made the large
amount of OC (crop residue) returning to the soils
possible.

The soil C containing capacity is essentially de-
termined by the steady state C level under a specific
management-soil-climate condition, but the efficien-
cy of agricultural management practices to store
SOC is highly time-dependent and influenced by
the saturation deficit (Stewart et al. 2008; 2009).
As in particular northern China had a low SOC level
in the early 1980s (4.62 ± 1.15 g kg−1; Cheng et al.
2005), the C input increased dramatically from 439
± 31 (g m−2) in 1978 to 1090 ± 169 (g m−2) in 2008.
At the same time mechanization (Table S4) enabled

a change of the straw processing from surface dis-
posal to incorporation into the soil. The latter meth-
od has a higher C accumulation efficiency (Liu et al.
2014). The average efficiency of carbon sequestrat-
ed in the NCP (1980s–2000s) was 0.11 g kg−1

year−1, which was 1.97 and 1.76 times higher than
that of Chinese croplands (0.056 g kg−1 year−1) and
upland soils (0.062 g kg−1 year−1) (Fig. 6), respec-
tively. It was even slightly faster than that of paddy
soils (0.099 g kg−1 year−1), which were considered
to be more efficient in sequestrating carbon than
upland soils (Pan et al. 2010; Pan et al. 2003a; Qin
et al. 2013; Sun et al. 2010). Therefore, the NCP
might be the region with the fastest SOC accumula-
tion rate during the last three decades. This is con-
sistent with the result by Yan et al. (2011), who
stated that the largest increase in SOC occurred in
Fluvisols (+30.5 %) in the period from 1978 to 1982
to 2007–2008 among soil types in China. The low
initial C content and large amount of C input that
followed the enhanced crop productivity facilitated
the high C sequestration.

Fig. 5 Dynamics of organic
carbon input into soils by crop
biomass return; SOC content at
different phases in the NCP.
Calculation parameters are in
Table S3

Table 4 Results of type III tests of multiple linear regression analysis

Variable Estimate Std.Error Partial R2 model R2 F-value p-value adj.R2 RMSE n

Intercept 0.19 0.06 10.83 0.01 0.73 0.03 13

Yield_increase 3.05E-4 1.22E-4 0.62 0.62 6.28 0.03

SOC_1980 −0.01 0.01 0.10 0.72 3.92 0.08

MAT_Q −1.87 1.06 0.07 0.79 3.13 0.11
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Effects of management practices and environmental
factors on SOC

Human activities and environmental factors mutually
influence carbon accumulation by affecting its input
and output processes. Although overall C sequestration
rate are high, the spatial pattern of SOC evolution is
heterogeneous (Table 2), which reflects an imbalance of
influences from natural and anthropogenic controls.
With years of government facilitation, agricultural in-
vestments in chemical fertility, irrigation area and agri-
cultural machinery increased over the last 30 years by
618, 26 and 832 %, respectively (agricultural statistical
yearbooks of Shandong, Hebei and Henan provinces,
1978–2008) (Table S4). The cultivation environment
was therefore immensely improved. Some places
reached a high crop productivity of more than
15000 kg ha−1 (Zhang et al. 2011) compared to less than
3000 kg ha−1 in the early 1980s. Soil salinization was no
longer the main agro-impeding factor (Fang et al. 2005).
Without nutrient and water deficiencies (Wang et al.
2014), FQ and YC had the highest C sequestration
efficiencies over 0.15 g kg−1 y-1. NP is located in the
eastern Haihe Plain suffering the serious water deficien-
cy which impeded its agricultural development. For
instance, the water table in Quzhou (in the Hebei prov-
ince) decreased from 4.72 m in 1981 to 9.81 m in 1999,
which was far below the sea level in 2005a (Liu et al.
2005), consequently causing serious environmental
problems due to ground subsidence and seawater intru-
sion (Mo et al. 2006). KL is located in the estuary of the

Yellow River; due to the universal distribution of soil
salinity in this district, 78 % of the sampling points in
KL from our survey data were planted only with cotton,
which has less organic material remaining after harvest.
The differences in crop rotation between KL and the
other three counties, primarily induced by soil salinity,
resulted in a different C input and hence SOC accumu-
lation rate (Table 3).

Much attention has been paid to the effect of climate
change on SOC accumulation in croplands, and the
different results reveal that it is difficult to draw uniform
conclusions (Bellamy et al. 2005; Ciais et al. 2011).
Wang et al. (2014) found no strong correlation between
the SOCC and climatic variables (MAT, MAP) in the
NCP by employing a calibrated Agro-Cmodel, which is
consistent with our results (Table 4 and A.2). However,
the increasing temperature trend (MAT_Q) appears to be
a negative factor for C sequestration (Table 1 and S2) at
the site level. This may be due to the higher microbial
activity at higher temperatures, subsequently causing
more C loss due to decomposition (Yang et al. 2007).
However, from the county-level analysis (Table 4), the
temperature effect on SOC dynamics was not significant
in the multiple linear regression (p=0.11). Nevertheless,
the climate changes in the NCP (Fig. S2) might indi-
rectly affect SOC by stimulating an increase in crop
NPP (Tao and Zhang 2013; Tao et al. 2014).
Therefore, we can infer that climate effects are of minor
importance in agricultural soils because agro-
management options counteract them to a certain extent
(Wiesmeier et al. 2013; Xu et al. 2009); improvement in

Fig. 6 Comparison of SOC rate
of change between croplands in
the NCP and China during the
period 1980s-2000s. Vertical line
represents the values ranging
from the lower to the upper.
Horizontal line is the average
value corresponding to land use in
the bottom. Paddy is cropland
where irrigated rice grown and
upland is that where other crops
are planted
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management practices should be a more important
factor in the SOCC than the scenarios of climate
change, which is consistent with the conclusions of
Thomson et al. (2006) and Yu et al. (2009). The role
of soils in sequestering C as affected by climatic
variables needs to be identified over a long time
scale, and modelling could be a promising mean to
detect the effect of climate change on SOC dynamics
in agricultural ecosystems.

Many previous studies have proposed a relationship
between initial organic matter or soil particle-size frac-
tions and its SOC sequestration efficiency (Bellamy
et al. 2005; Hassink 1997; Post and Kwon 2000).
From our analysis, SOCC had a slightly negative rela-
tionship with the initial SOC content in the 1980s
(Tables 2 and 3 and S2) at both the site and county
levels. Regardless of the climate scenario or the man-
agement option, the simulated data suggested that soils
with low carbon content tend to accrue more C than
soils with high carbon content (Bellamy et al. 2005).
Soils relatively rich in C may not accrue C because they
may already close to the saturation level (Hassink 1996;
Six et al. 2002) or because the simulated C inputs are not
large enough to offset the losses dictated by the decom-
position rates (Thomson et al. 2006). It has been sug-
gested that SOC is texture-dependent and highly corre-
lated with the amount of fine particles (Angers et al.
2011; Arrouays et al. 2006; Hassink 1997). A positive
effect was found between the SOCC and clay content
(Table 3), which is consistent with Meersmans et al.
(2011) and Goidts and van Wesemael (2007), who
found that in spite of the significantly increased OC
input in northern Belgium, only the clay textured crop-
land soils were characterized by an important increase in
SOC between 1960 and 2006. While clay protection is
generally accepted as a control on the SOC level in
natural soils, Pan et al. (2003b) argued that only 10–
30 % of the regional variation in SOC across China was
explained by the clay content and that mineral protec-
tion was not generally true for the SOC levels of China’s
cropland soils.

Adaptive management practices for SOC sequestration
in the future

The SOC content was obviously enhanced during the
last 30 years in the NCP, while it remained at a low level
compared to other agricultural regions in China.
Meanwhile, the general status of SOC content in

China is also falling behind (Batjes 1996). These con-
ditions suggested a huge C sequestration potential for
the soils (Fluvisols) in the NCP. This potential could be
realized by adapting RMPs, which could both enhance
soil quality and keep yield production steady under
future climate scenarios.

The increasing water deficits associated with subse-
quent problems threatened the sustainability of agricul-
tural production in this area (Hu et al. 2005). Recent
studies have shown that climate change could greatly
influence the water crisis situation in the NCP (Tao et al.
2005). Fig. S2 depicts the climate change trend: an
increase in annual temperature along with a decrease
in precipitation in the northern region, aggravates the
water deficiency (Fu et al. 2004; Yang et al. 2004).
Improving the water use efficiency (WUE) of the crops
through construction projects and crop breeding tech-
nology is crucial to coping with the water shortage issue
and to guarantee enough grain production to meet the
food demands of the increasing population (Condon
et al. 2004).

Increasing N fertilization has been a major part of
improved agricultural practices and has contributed sub-
stantially to the increase in crop yield in the NCP from
1980 to 2000 (Ju et al. 2009). However, the annual
application rate of synthetic N is more than
600 kg N ha−1 in the NCP, which is far greater than
crop demand and has resulted in a series of environmen-
tal problems (Guo et al. 2010). Wang et al. (2014) found
that the positive effect of fertilizer on SOC accumulation
did not last when N fertilization application rates
exceeded 300 kg N ha−1 in the NCP. In Australia, using
an agricultural system model, Zhao et al. (2013) found
negligible further increases in SOC when fertilization
rate more than 100 kg N ha−1. Optimum N techniques
should be applied to substantially reduce N application
and to maintain the yields demand to feed an increasing
population, which preventing total N loss to the envi-
ronment as well, aiming to establish sustainable agricul-
tural systems (Ju et al. 2009).

An area of 4.4×105 ha (over 70 % of the total) in the
Yellow River Delta has been degraded due to salinity
(Han et al. 2000; Xu 2000). Previous studies have found
that the SOC content would be significantly increased
with improved soil quality (i.e., salinity reduction) and
agricultural management (i.e., freshwater addition). Yu
et al. (2012) claimed that the Yellow River Delta will
have great potential for SOC sequestration because of its
low SOC content compared to other coastal regions in
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China (Dodla et al. 2008; Wang et al. 2007); moreover,
anthropogenic activities have played a major role in the
SOC dynamics in this area.
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