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ABSTRACT

Increasing rainfall and longer drought conditions

lead to frequent changes in soil moisture that affect

soil organic carbon (SOC) mineralization. How-

ever, how soil moisture affects response of SOC

mineralization to litter addition in forest ecosys-

tems remains unexplored. We added 13C-labeled

litter to subtropical forest soils with three mass

water contents (L, 21%; M, 33%; H, 45%). Carbon

dioxide production was monitored, and the com-

position of soil microbial communities was deter-

mined by phospholipid fatty acid (PLFA). When no

litter was added, SOC mineralization was greater in

the M-treated soil. Litter addition promoted SOC

mineralization, but this promotion was altered by

soil moisture and litter type. Priming effects in-

duced by P. massoniana leaf litter in the M-moist-

ened soil were significantly (P < 0.05) higher than

those in other treatments. Litter-derived C was

approximately 55% incorporated into 18:1x9c and
16:0 PLFAs, and this proportion was not signifi-

cantly affected by soil moisture. Soil moisture af-

fected the distribution of litter-13C in i15:0, i17:0,

and cy19:0 individual PLFAs. The primed C evo-

lution was significantly related to the ratio of

Gram-positive to Gram-negative bacteria. These

results suggest that changes in soil moisture could

affect SOC mineralization in forest ecosystems.

Key words: soil moisture; litter addition; priming

effect; soil microbial community; soil organic

carbon; forest eocsystem.

INTRODUCTION

Although future changes in precipitation strongly

depend on climatic zone and region, considering

recent climate changes, increasing rainfall and

longer drought conditions may be expected (IPCC

2007). These conditions cause frequent changes in

soil moisture and consequently influence the

availability of carbon (C) and nutrients (Schimel

and others 2007; Butterly and others 2009) and the

mineralization of soil organic C (SOC; Navarro-

Garcı́a and others 2012; Wang and others 2013a).

Therefore, as highlighted by Kuzyakov (2010),

studying the influence of soil moisture on the

priming effect is of particular importance for

understanding the potential influence of climate

change on the C cycle.

The priming effect is defined as the promotion or

retardation of SOC mineralization by the addition
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of an external organic substrate to the soil (Ku-

zyakov and others 2000). This effect has been

extensively studied in response to the addition of

organic C to soil, ranging from easily degraded C

sources (Hamer and Marschner 2005; Qiao and

others 2014) to plant residues (Potthast and others

2010; Wang and others 2013a). Most studies on the

priming effect have focused on the quantity and

quality of external substrates (Hamer and Marsch-

ner 2005; Potthast and others 2010) and on nutri-

ent availability (Nottingham and others 2009;

Zhang and Wang 2012; Wang and others 2014).

Soil moisture is a key factor influencing SOC

mineralization in terrestrial ecosystems (Liu and

others 2009; Moyano and others 2013). Although

some studies on SOC mineralization in relation to

soil moisture have been conducted (Schimel and

others 2007; Misson and others 2010; Manzoni and

others 2012), little is known about how soil mois-

ture affects the priming effect in forest ecosystems.

The composition and activity of the soil microbial

community affect the magnitude and direction of

the priming effect (Blagodatskaya and Kuzyakov

2008; Garcia-Pausas and Paterson 2011; Yao and

others 2012; Wang and others 2014). The response

of the soil microbial community to litter addition

may be affected by changes in soil moisture be-

cause soil moisture plays a vital role in regulating

microbial activity and community composition

(Hackl and others 2005; Chen and others 2007;

Brockett and others 2012). For example, short-

term increases in soil microbial activity can occur

after rewetting of dry soils, as shown by a flush of C

mineralization (Navarro-Garcı́a and others 2012;

Göransson and others 2013). Although many

studies have investigated the influence of soil

moisture on microbial community composition

(Chen and others 2007; Brockett and others 2012;

Zumsteg and others 2013), none of these studies

have monitored changes in microbial community

composition with priming effect changes. More-

over, changes in soil microbial community com-

position may alter litter-C flow within the soil

microbial community (Rubino and others 2010;

Garcia-Pausas and Paterson 2011; Wang and others

2014). Some recent studies have successfully traced
13C-labeled substrates through soil microbial com-

munities using 13C-stable isotopic techniques, and

important information on microbial utilization of a

given substrate has been obtained through GC-C-

IRMS analyses of individual phospholipid fatty

acids (PLFAs; Moore-Kucera and Dick 2008; Dun-

gait and others 2011; Wang and others 2014).

However, data on the effect of soil moisture on C

flow from 13C-labeled substrates into soil microbial

community are unavailable.

In the subtropical forest ecosystem of China,

summer droughts have become more severe, and

the frequency of heavy rains has increased, thereby

resulting in frequent changes in soil moisture. In

the present paper, we report the responses of SOC

mineralization in an incubation experiment as af-

fected by soil moisture and the addition of Cun-

ninghamia lanceolata and Pinus massoniana litters.

This study aims to illustrate how soil moisture af-

fects the priming effect and litter-C flow into the

soil microbial community in forest ecosystems. Our

initial hypotheses are that the priming effect would

increase by increasing soil moisture and that the

relative contribution of SOC- and litter-derived C

in CO2 fluxes depended on soil moisture. To sepa-

rate litter from SOC mineralization, we used 13C-

labeled litter and monitored 13C flow through the

main microbial groups. We believe that this study is

the first to assess the influence of soil moisture on

the priming effect in forest ecosystems.

MATERIALS AND METHODS

13C-Labeled Leaf Litter and Soil
Sampling

In South China, C. lanceolata and P. massoniana are

the main tree species used for timber production;

these trees are cultivated over total areas of

approximately 11.3 and 12.0 million ha, respec-

tively. Therefore, litters from the two tree species

were chosen for the incubation experiment. The

site has a humid mid-subtropical monsoon climate

with a mean annual temperature of 16.5�C and

precipitation of 1200 mm. The seedlings of C.

lanceolata and P. massoniana were labeled with
13CO2 gas in a growth chamber. After 3-month

labeling, the isotopic d13C values of C. lanceolata and

P. massoniana leaf litters were 996 and 1318&,

respectively. Other chemical properties of the C.

lanceolata and P. massoniana leaf litters are shown in

Table 1. The soil used in the present experiment

was collected from the 0–10 cm layer of a C. lance-

olata forest located at the Huitong National Re-

search Station of Forest Ecosystem (26�50¢N,
109�36¢E) in Huitong County, Hunan Province,

South China. Fresh soil samples were transported

to the laboratory and immediately sieved

(<2 mm). Visible organic residues were removed

by hand picking. The soil was classified as ultisol

according to the second edition of USDA soil Tax-

onomy. The sand, silt, and clay contents of the soil
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samples were 11.7, 44.7, and 43.6%, respectively.

The total C and N contents of the soil were 26.7 and

2.05 g kg-1, respectively. Soil pH was measured at

a soil-to-H2O ratio of 1:2.5 (w/v) using a pH meter.

Incubation Experiment

Approximately, 8.5 kg of fresh soils collected was

preincubated for 5 days in a bucket containing a

beaker with distilled H2O to prevent desiccation

and a beaker with 1 M NaOH solution to trap the

evolved CO2. The experimental design included 27

samples divided into 9 treatments with 3 true

replicates per treatment (Table 2). Nine soil sam-

ples were amended with C. lanceolata (CL) leaf lit-

ter, another nine soil samples were amended with

P. massoniana (PM) leaf litter, and the remaining

nine samples were used as control soils. The leaf

litter was ground and then added as 5% of the SOC.

The nine treatments included three soil mass water

contents, that is, 21% (L), 33% (M), and 45% (H)

representing 44, 69, and 95% of the water-holding

capacity of the soil.

All soil samples were air-dried in the laboratory,

and then wetted with distilled water to achieve L,

M, and H soil moisture levels, respectively. Ground

leaf litter was homogeneously incorporated with

the soil to produce a mixture. This mixture and a

vial containing 20 ml of 0.2 M NaOH solution were

placed into 500-ml flasks to create a microcosm.

Microcosms were incubated in the dark for 45 days

at 25�C. The CO2 evolved from the soil was mea-

sured on days 1, 3, 6, 10, 15, 21, 29, and 45 by

alkali-trapping in the vials. After each sampling,

the flasks were flushed with reconstituted humid

and C-free air.

At the end of each sampling interval above,

10 ml of NaOH solution was used to determine the

amount of CO2-C evolved from soil via titration

with 0.1 M HCl. The CO2 evolved from the soil

sample was calculated from the difference in the

values of CO2 evolved in the flasks with soil and

without soil. The remaining 10 ml of NaOH solu-

tion was used to analyze the isotopic composition

of the trapped CO2 by a stable isotope-ratio mass

spectrometer (Picarro G2131-i Analyzer, USA) with

0.2& analytical precision.

Microbial Community Composition

Soil microbial community composition was deter-

mined using PLFAs as biomarkers for different

microbial groups. Lipid extraction and PLFA anal-

yses were performed as described by Wang and

others (2013a). After incubation, part of the soil

was sampled and freeze-dried for PLFA analysis.

Briefly, 5 g of freeze-dried soil was extracted using

chloroform:methanol:phosphate buffer (1:2:0.8).

The PLFAs extracted were purified on silica col-

umns with chloroform, acetone, and methanol,

amended with methyl-nonadecanoate as an inter-

nal standard for quantification, and converted to

fatty acid methyl esters (FAMEs) by alkaline

methanolysis. The concentration and isotopic

composition of individual FAME were analyzed by

tandem gas chromatography-mass spectrometry

(Thermo Fisher, USA). Qualitative standard mixes

(37 Comp. FAME Mix and Bacterial Acid Methyl

Esters CP Mix, Sigma-Aldrich) were used to iden-

tify the peaks. The total bacterial biomass was cal-

culated by summing i15:0, a15:0, 15:0, i16:0,

16:1x7c, 16:1x9c, 16:0, a17:0, i17:0, cy17:0, 17:0,
18:0, cy19:0, and 20:0 PLFAs (Hill and others

2000). PLFAs i15:0, a15:0, i16:0, i17:0, and a17:0

were used as markers for Gram-positive bacteria,

whereas PLFAs 16:1x7c, 16:1x9c, cy17:0, and

cy19:0 were used as markers for Gram-negative

bacteria (Moore-Kucera and Dick 2008). PLFAs

18:1x9c, 18:1x9t, and 18:2x9,12c were used as

markers for fungi, and PLFAs 10Me16:0,

Table 1. Chemical Property of the Labeled Cunninghamia lanceolata and Pinus massoniana Leaf Litter Used in
the Incubation Experiment

C (g kg-1) N (g kg-1) P (g kg-1) C/N C/P K (g kg-1) Ca (g kg-1)

C. lanceolata 471.4 17.7 1.11 26.6 424.7 11.6 6.6

P. massoniana 477.1 19.2 1.51 24.9 316.0 6.2 1.6

Table 2. Description of Experimental Treatments

Treatment Soil

moisture

(%)

Leaf litter

(g C kg-1

dry soil)

Leaf litter

type

L 21 0

M 33 0

H 45 0

L + CL 21 1.43 C. lanceolata

M + CL 33 1.43 C. lanceolata

H + CL 45 1.43 C. lanceolata

L + PM 21 1.43 P. massoniana

M + PM 33 1.43 P. massoniana

H + PM 45 1.43 P. massoniana
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10Me17:0, and 10Me18:0 were used as markers of

actinomycetes (Hill and others 2000).

Calculation and Statistical Analysis

A mass balance equation was used to calculate

the amount of CO2-C derived from litter and

SOC under incubation (Blagodatskaya and others

2011):

CL ¼ Ctðdt � dSÞ=ðdL � dSÞ ð1Þ

CS ¼ CtðdL � dtÞ=ðdL � dSÞ; ð2Þ

where Ct (Ct = CL + CS) is the total amount of CO2-

C during the considered time interval, dt is the

corresponding isotopic composition, CL is the

amount of C derived from the added litter, dL is the
isotopic composition of the litter, CS is the amount

of C derived from SOC, and dS is the isotopic

composition of CO2-C in the control (non-amen-

ded soil) during incubation.

The priming effect (PE, %) induced by the added

litter was calculated by comparing the amount of

CO2-C in litter-containing soil samples with the

amount of CO2-C in the control soil sample:

PE ¼ 100� ðCO2-Ctreatment � CO2-CcontrolÞ
=CO2-Ccontrol; ð3Þ

where Ctreatment is the accumulated amount of CO2

derived from SOC in treatments with litter addition

and Ccontrol is the amount of CO2 derived from the

SOC without litter addition under the correspond-

ing soil moisture level.

The percentage of plant-derived labeled C in each

PLFA was determined using a mass balance ap-

proach (Rubino and others 2010):

Pi ¼ ðd13Ct � d13CcÞ=ðd13Cl � d13CcÞ; ð4Þ

where d13Ct is the d13C enrichment (&) of indi-

vidual PLFA in the soils treated with litter at the

end of incubation, and d13Cc is the d
13C enrichment

(&) of individual PLFA in the control soil, and

d13Cl is the d13C of labeled litter (&). The total la-

beled litter-derived C in each PLFA was calculated

by multiplying each Pi by the individual PLFA

abundances.

All statistical analyses were conducted using

SPSS version 17.0 for Windows (SPSS Inc., Chica-

go, USA). Two-way analysis of variance followed

by Tukey’s test was used to analyze the effects of

soil moisture and litter addition on SOC mineral-

ization and litter decomposition, primed C evolu-

tion, soil microbial community composition, and

percentage distribution of 13C among the main

individual PLFAs. Pearson’s correlation coefficients

were calculated to quantify the relationship be-

tween the cumulative primed C evolution and the

SOC mineralization and microbial community

composition. Significant differences were deter-

mined at P < 0.05.

RESULTS

SOC Mineralization and Priming Effect

SOC mineralization in no-leaf litter addition treat-

ments differed among soil moisture levels (Fig-

ure 1). SOC mineralization increased over 45 days

period according to the order: M > H > L, and

ranged from 192 to 241 mg C kg-1 soil. Moreover,

differences in the rate of SOC mineralization

among treatments gradually diminished with

increasing incubation time.

The temporal evolution of cumulative primed C

evolution after leaf litter addition is shown in Fig-

ure 2. A high rate of primed C evolution was re-

corded during the first 21 days. At the late stage

(from 29 to 45 days) of incubation, decrease in the

cumulative primed C evolution was observed in

some treatments but not in the M + PM treatment,

suggesting the negative priming effect occurred.

After the addition of C. lanceolata leaf litter, the

cumulative primed C evolution in the M-treated

soil was 77.8 and 17.9% higher than those in the L-

and H-treated soils, respectively. After the addition

of P. massoniana leaf litter, the cumulative primed C

evolution in the M-treated soil was 139.6 and

98.5% higher than those in the L- and H-treated

soils, respectively.

Soil moisture affected the priming effect of SOC

mineralization (Figure 3). The highest priming ef-

fect occurred in the M treatments, showing priming

effect induced by P. massoniana leaf litter addition,

was higher than C. lanceolata leaf litter addition. The

priming effect induced by C. lanceolata leaf litter

addition was 23.2, 32.9, and 30.2% in the L, M,

and H soil treatments, respectively. P. massoniana

leaf litter addition induced priming effect of 26.1,

50.0, and 27.3% in the L, M, and H soil treatments,

respectively.

Leaf Litter Decomposition

Leaf litter decomposition under different soil

moisture levels showed a similar pattern (Figure 4).

The decomposition of leaf litters began soon after

addition during the first 21 days and then gradually

slowed down thereafter. Litter showed the highest

decomposition in the M soil moisture treatment
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and the lowest decomposition in the L soil moisture

treatment. C. lanceolata leaf litter decomposition did

not differ in the L and H soil moisture treatments,

and P. massoniana leaf litter decomposition did not

differ in the M and H soil moisture treatments.

Considering the total litter decomposition observed

during the 45 days incubation period, the propor-

tion of the decomposed litter to the added leaf litter

ranged from 19.7 to 32.8%.

Relative contribution of SOC-derived CO2 to to-

tal CO2 fluxes ranged from 54.8 to 64.0%, and

contribution of litter-derived CO2 varied from 36.0

to 45.2% (Figure 5). SOC-derived C contributed

more to CO2 fluxes than litter-derived C at the

same moisture level. CO2 derived from C. lanceolata

leaf litter had lower contribution to CO2 fluxes at

the H moisture level, but CO2 derived from P.

massoniana leaf litter had lower contribution at the
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M moisture level. On average, C. lanceolata litter-

derived CO2 showed higher contribution to CO2

fluxes than P. massoniana litter.

Soil Microbial Community Composition
and PLFA d13C

Without litter addition, the bacterial PLFA con-

centration increased in the M treatment compared

with that in the L treatment, thereby resulting in a

higher ratio of bacteria to fungi (Table 3). The

concentrations of actinomycetes, Gram-negative

bacteria, and Gram-positive bacteria were also

higher in the M treatment than in other treat-

ments. Microbial communities in the L treatment

were distinguished from microbial communities in

the M and H treatments by higher abundances of

Gram-positive bacteria (i15:0) and lower abun-

dances of fungi 18:1x9c and 18:2x9,12c (Figure 6).

The addition of leaf litters increased the microbial

biomass, but decreased the ratio of bacteria to

fungi compared with the treatments without litter

addition at the corresponding soil moisture levels

(Table 3). The addition of C. lanceolata leaf litter did

not alter the effect of soil moisture on soil microbial

concentration and community composition. By

contrast, the addition of P. massoniana leaf litter

altered the effect of soil moisture on the concen-

tration and community composition of some

microbial groups. The concentration of total PLFAs,

fungi, and Gram-negative bacteria increased in the

L + PM treatment, and the ratio of Gram-positive

to Gram-negative bacteria decreased in the

M + PM treatment.

Approximately, 55% incorporation of litter-de-

rived 13C into 18:1x9c and 16:0 PLFAs was ob-

served. These percentages decreased according to

the order 18:2x9,12c, i17:0, and cy19:0 PLFAs

(Table 4). Incorporation of litter-derived 13C into

the i15:0 and cy19:0 PLFAs was lower under the L

soil moisture. Most of the new litter-derived C was

incorporated into non-specific bacteria and fungal

PLFAs, accounting for over 72.3% of the total lit-

ter-derived C incorporated into PLFAs. Under the

M moisture treatment, incorporation of C. lanceolata

litter C into the total bacteria and Gram-negative

bacteria was slightly higher than that of P. masso-

niana litter C; incorporation into fungi showed the

opposite trend. P. massoniana litter C incorporated

into fungi was higher under the L moisture treat-

ment than that under the M moisture treatment.

The relationships between cumulative primed C

evolution and mineralized SOC and the ratio of

Gram-positive to Gram-negative bacteria are illus-

trated in Figure 7. Significant correlations were

found between primed C evolution and mineral-

ized SOC and between primed C evolution and

ratio of Gram-positive to Gram-negative bacteria;

by contrast, no relationship between primed C

evolution and concentrations of total PLFAs, bac-
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teria and fungi, and Gram-positive and Gram-

negative bacteria was observed.

DISCUSSION

Priming effect caused by increased organic materi-

als (for example, litter, root, and root exudates)

under rising atmospheric CO2 concentrations and

temperatures will affect SOC mineralization (Ku-

zyakov 2010; Zhang and Wang 2012), but this

priming effect is influenced by frequent changes in

soil moisture caused by increases in rainfall and

longer drought conditions. Our study on the effects

of soil moisture on the response of SOC mineral-

ization to litter addition yielded some important

findings in subtropical forest soils. First, the prim-

ing effect of SOC mineralization was highest under

the medial soil moisture level, but the response of

priming effect to soil moisture is strongly related to

litter species. Moreover, relative contribution of

SOC- and litter-derived C to CO2 fluxes depends on

soil moisture conditions. Second, the response of

the soil microbial community to soil moisture is

affected by litter addition. Finally, bacterial com-

munity shifts are partly responsible for the differ-

ences in soil moisture influence on the priming

effect. Although some important findings were

yielded in our experiment, caution should be

exercised when our results are applied to what will

happen to priming effects, losses of SOC, and dif-

ferential incorporation of litter and SOC into dif-

ferent microbial groups in the field in response to

global climate changes. In our experiment, ground

leaf litter was used to add into the soil rather than

intact litter. The time course of decomposition of

ground litter incorporated into soil will also differ

from intact litter on the soil surface. The basic

principles derived from our results, however, can

be used to interpret patterns in the field, and it is

also quite possible that these results would apply

more directly to the effects of moisture interacting

with leaf litter decomposition in the field.

Without addition of leaf litter, increased CO2

production occurred in the M treatment, which

suggests that native SOC mineralization is con-

trolled by soil moisture. Several studies also

demonstrate that soil respiration increases with soil

moisture (Saiz and others 2007; Borken and

Matzner 2009; Abera and others 2012). Findings in

forest soils are inconsistent with the observations of

Dijkstra and Cheng (2007) and Geisseler and others

(2011) in arable soils. The different responses of

SOC mineralization to changes in soil moisture

may be attributed to differences in soil texture and

moisture levels between experiments.T
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Soil moisture is a driver of soil microbial activity,

and microbes are generally believed to be the key

factors affecting SOC mineralization in many

ecosystems (Liu and others 2009; Moyano and

others 2013). Higher primed C evolution in the M

treatment compared with that in the L treatment

was attributed to increases in labile C and nutrient

flux, which could further stimulate microbial

growth and activities (Schimel and others 2007;

Iovieno and Baath 2008; Butterly and others 2009).

This finding is supported by our data of soil

microbial biomass (Table 3). Fierer and Schimel

Table 4. Percentage of Distribution of Litter-13C Among the Main Individual PLFAs Under Different Soil
Moisture Levels at the End 45-Day Incubation

L + CL M + CL H + CL L + PM M + PM H + PM

G + bacteria

i15:0 3.54 ± 0.31a 4.60 ± 0.29b 4.51 ± 0.34b 3.22 ± 0.18a 4.40 ± 0.33b 4.70 ± 0.40b

i16:0 4.08 ± 0.44a 3.24 ± 0.36a 3.63 ± 0.39a 4.42 ± 0.63a 3.42 ± 0.38a 3.29 ± 0.41a

i17:0 4.63 ± 0.49a 8.60 ± 1.03c 6.34 ± 0.57b 4.00 ± 0.35a 6.46 ± 0.44b 7.70 ± 0.97bc

a17:0 3.05 ± 0.32c 2.40 ± 0.26bc 2.24 ± 0.29bc 2.42 ± 0.30bc 1.21 ± 0.17a 1.86 ± 0.22b

G-bacteria

cy17:0 4.55 ± 0.83b 4.42 ± 0.62b 2.57 ± 0.47a 2.76 ± 0.33a 2.64 ± 0.30a 3.44 ± 0.32ab

cy19:0 3.52 ± 0.34a 7.04 ± 0.65b 5.93 ± 0.74b 4.53 ± 0.38ab 6.09 ± 0.53b 6.11 ± 0.71b

Actinomycetes

10Me17:0 1.17 ± 0.09b 1.70 ± 0.13c 1.00 ± 0.10b 2.44 ± 0.18d 0.50 ± 0.04a 1.65 ± 0.13c

10Me18:0 1.17 ± 0.11a 0.93 ± 0.10a 0.95 ± 0.08a 1.14 ± 0.10a 0.90 ± 0.07a 1.00 ± 0.08a

Non-specific bacteria

15:0 1.03 ± 0.11b 1.03 ± 0.08b 0.85 ± 0.09b 0.24 ± 0.03a 0.67 ± 0.07b 1.14 ± 0.10b

16:0 30.33 ± 3.74a 25.64 ± 2.13a 27.20 ± 3.01a 28.80 ± 2.78a 27.00 ± 2.90a 26.00 ± 2.45a

17:0 0.49 ± 0.06a 0.79 ± 0.10a 0.61 ± 0.08a 0.49 ± 0.04a 0.46 ± 0.05a 0.69 ± 0.06a

18:0 1.18 ± 0.10a 1.72 ± 0.21b 2.13 ± 0.17bc 1.53 ± 0.14ab 2.86 ± 0.32c 2.17 ± 0.28c

Fungi

18:2x9,12c 8.71 ± 1.02a 7.39 ± 0.84a 8.09 ± 0.97a 8.92 ± 0.75a 7.23 ± 0.68a 8.18 ± 1.01a

18:1x9c 28.96 ± 3.10a 26.22 ± 2.46a 29.68 ± 3.07a 30.28 ± 3.09a 31.87 ± 3.44a 27.56 ± 2.73a

18:1x9t 3.59 ± 0.27a 4.27 ± 0.32a 4.27 ± 0.38a 4.80 ± 0.36a 4.31 ± 0.41a 4.52 ± 0.39a

Data are mean ± SD (n = 3) of three replicates at the end of the 45-day incubation. L, M, and H denote low, medial, and high soil moisture, respectively. CL and PM denote C.
lanceolata and P. massoniana litters. Different letters in the same row denote significance.

Figure 6. Relative abundances of individual phospholipid fatty acids (PLFAs) in control soils (without leaf litter addition)

under different soil moisture levels (L low, M medial, H high). The vertical bars are standard deviations.
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(2002) and Iovieno and Baath (2008) determined

that increases in C mineralization associated with

changes in soil moisture occurred over relatively

short periods of time (5–7 days). We also deter-

mined that differences in the rate of SOC miner-

alization between treatments gradually diminished

with time, which suggests that the initial flush of

labile C and nutrients had been consumed. Al-

though we did not measure levels of the oxygen

diffusion, we postulate that lower SOC mineral-

ization in the H treatment compared with that in

the M treatment is due to oxygen deficiency in the

soil, which inhibits microbial activity and decom-

position (Liu and others 2009; Geisseler and others

2011). In future research, we will determine soil

pore size distributions, water potentials, and oxy-

gen diffusion to explain further how soil moisture

affects SOC mineralization.

Litter species affected the priming effect of SOC

mineralization. At the same soil moisture level,

differences in the priming effect induced by C.

lanceolata and P. massoniana leaf litter addition were

in accordance with observations from previous

works (Blagodatskaya and Kuzyakov 2008; Pot-

thast and others 2010; Wang and others 2013b),

indicating that the quality of the substrate added to

soils affects the magnitude of the priming effect. In

a previous study, Wang and others (2014) found

that the leaf litter with higher C:P ratios promoted

greater SOC mineralization. In the present study, C.

lanceolata leaf litter which features a higher C:P

ratio (425) tended to cause higher priming effects

than P. massoniana leaf litter with a lower C:P ratio

(316) under the H soil moisture levels, but C.

lanceolata litter caused lower priming effects than P.

massoniana leaf litter under the L and M soil mois-

ture levels. We postulate that in this experiment,

the functions of other elements in controlling

priming effect may be more important than that of

the C:P ratio.

Contrary to our hypothesis, the priming effect

was relatively more extensive in the M treatment

than in other treatments. This finding does not

agree with previous observation in agricultural soils

(Dijkstra and Cheng 2007). Dijkstra and Cheng

(2007) found that priming effects in the soils with

85% of water-holding capacity were higher than

those in soils with 45% of water-holding capacity.

The authors thus believed that the effect of soil

moisture on the priming effect depends on the soil

types. In the present study, the soil was clay loam

with 43.6% clay, by contrast, the soil used by

Dijkstra and Cheng (2007) was sandy loam.

Moreover, the highest soil moisture (95% water-

holding capacity) in our study was greater than

that in the study of Dijkstra and Cheng (2007).

Thus, we assume that differences in soil texture and

moisture levels are responsible for distinct re-

sponses of priming effect to soil moisture. SOC

mineralization with increasing soil moisture fol-

lowed a uniform pattern after the addition of C.

lanceolata and P. massoniana but the magnitude of

the priming effect differed. This result suggests that

the soil moisture dependency of the priming effect

is affected by the litter species, as noted in other

studies on agricultural soils (Geisseler and others

2011; Abera and others 2012). Differences in sub-

stance quality may be a possible mechanism for

effect of litter species on the response of priming

effect to soil moisture. In the present study, the two

types of leaf litter had different initial P concen-

tration and C:P. Li and others (2002) reported that

soils from C. lanceolata forests had greater phenolic

and lignin contents than soils from P. massoniana

forests, but we did not determine these contents in

the present study. Thus, our further work could

include investigation of the interactive effect of soil

moisture and litter quality on the priming effect.

Soil microbes can utilize leaf litter added to soil as

energy and C sources to decompose native SOC.

Soil moisture showed minimal effects on the dis-

tribution of 13C in soil microbial groups for the

same litter species, although 13C incorporation

showed significant differences in some individual
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PLFAs (for example, i15:0, i17:0, cy19:0). The in-

crease in soil microbial activity only lasted for rel-

atively short time periods because of depletion of

initial flush of labile C and nutrients associated

with changes in soil moisture (Iovieno and Baath

2008). This resulted in no detectable effect of soil

moisture on the distribution of 13C in soil microbial

groups. Therefore, the number of sampling times

should be increased during the early incubation to

qualify the dynamic activity and composition of soil

microbial communities in future research. The 13C

incorporated into Gram-positive bacteria was twice

as much as that incorporated into Gram-negative

bacteria likely because of the larger concentration

of Gram-positive bacteria than Gram-negative

bacteria in the samples. Some studies also deter-

mined that incorporation of 13C derived from

exudates and glucose into Gram-positive bacteria

was higher than that into Gram-negative bacteria

(Rubino and others 2010; Dungait and others

2011). This finding suggests that the function of

Gram-positive bacteria in decomposing litter is

greater than that of Gram-negative bacteria.

In conclusion, greater SOC mineralization was

observed in the M treatment (69% water-holding

capacity) when no litter was added, which suggests

that soil water availability is vital to SOC mineral-

ization in acid soils from subtropical forests. How-

ever, we also note that increases in soil moisture

may result in oxygen deficiency, which can inhibit

microbial activity and SOC mineralization because

the soil is clay loam with high clay content (Saiz

and others 2007; Liptzin and others 2011). There-

fore, SOC mineralization may decrease when soil

moisture reaches full water-holding capacity.

Priming effects were affected by changes in soil

moisture, and higher priming effects were observed

in the M-treated soils. Litter species affected the

response of priming effects to changes in soil

moisture, which indicates that soil moisture pre-

sents different effects on CO2 emissions. Distinct

contribution of SOC-derived C to total CO2 fluxes

under different moisture levels suggested that rel-

ative contribution of SOC- and litter-derived C to

CO2 fluxes was dependent on soil moisture condi-

tions. Higher amounts of fresh litter C were incor-

porated into the 16:0 and 18:1x9c PLFAs, which

suggests that these two microorganisms perform

significant functions in degrading added litter. Fu-

ture work could focus on investigating bacterial

and fungal communities by next generation

pyrosequencing and DNA-based stable isotope

probing to elucidate the importance of the soil

microbial community to the soil C cycle further.
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