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A B S T R A C T

To alleviate the severe rocky desertification and improve the ecological degradation conditions in Southwest China, the
national and local Chinese governments have implemented a series of Ecological Restoration Projects (ERPs) since the
late 1990s. This study proposed a remote sensing based approach to evaluate the long-term efforts of the ERPs started in
2000. The method applies a time-series trend analysis of satellite based vegetation data corrected for climatic influences
to reveal human induced vegetation changes. The improved residual method is combined with statistics on the invested
project funds to derive an index, Project Effectiveness Index (PEI), measuring the project effectiveness at county scale.
High effectiveness is detected in the Guangxi Province, moderate effectiveness in the Guizhou Province, and low and no
effectiveness in the Yunnan Province. Successful implementations are closely related to the combined influences from
climatic conditions and human management. The landforms of Peak Forest Plain and Peak Cluster Depression regions
in the Guangxi Province are characterized by temperate climate with sufficient rainfall generally leading to a high effec-
tiveness. For the karst regions of the Yunnan and Guizhou Provinces with rough terrain and lower rainfall combined with
poor management practices (unsuitable species selection, low compensation rate for peasants), only low or even no effect
of project implementations can be observed. However, the effectiveness distribution is not homogeneous and counties
with high project effectiveness in spite of complex natural conditions were identified, while counties with negative veg-
etation trends despite relatively favorable conditions and high investments were also distinguished. The proposed frame-
work is expected to be of high relevance in general monitoring of the successfulness of ecological conservation projects
in relation to invested funds.

© 2016 Published by Elsevier Ltd.
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1. Introduction

Karst rocky desertification is a typical type of land degradation in
which karst geomorphology covered by vegetation and soil is trans-
formed into a rocky landscape with very limited soil and vegetation
resources (Wang et al., 2004; Yuan, 1997). Rocky desertification is
impacted by the combined action of geology, geomorphology, soil,
warm and wet climate, vegetation, as well as human overexploita-
tion of natural resources (Liu et al., 2008; Wang et al., 2004; Xu and
Zhang, 2014). The rocky desertification in the karst regions of South-
west China has been identified as the most severe ecological problem
threatening the area (Wang et al., 2004; Yuan, 1997; Yue et al., 2010).
Up to 82% of the rocky desertification areas are concentrated in the
Yunan, Guizhou, and Guangxi Provinces (Jiang et al., 2014). To pro
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tect and improve the ecological environment, the state and local Chi-
nese governments have launched a series of ecological restoration pro-
jects (ERPs), such as the Natural Forest Protection Project, the Grain
to Green Program, and the Karst Rocky Desertification Comprehen-
sive Control and Restoration Project. However, assessment of the ef-
fectiveness of these projects mainly focuses on the north of China
(Huang et al., 2013; Li et al., 2016; Wu et al., 2014, 2013; Zhang et al.,
2012, 2016) and the effectiveness and benefits of the ERPs in South-
west China are still uncertain (Trac et al., 2007; Xu et al., 2006).

The primary objectives of ERPs are to protect the existing forests
and to increase vegetation coverage by means of afforestation (i.e.,
planting on previously barren or abandoned wastelands), reforestation,
and conversion of cropland to forest and grassland. An increase/de-
crease in vegetation can thus be interpreted as progress/regression of
the effectiveness of ERPs. However, apart from ERPs, also climatic
changes influence vegetation dynamics (Choi, 2004; Seabrook et al.,
2011). Therefore, to evaluate the performance of large-scale ERPs,
a prerequisite is to distinguish between human- and climate-induced
vegetation changes.

http://dx.doi.org/10.1016/j.jag.2016.09.013
0303-2434/© 2016 Published by Elsevier Ltd.
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Field surveys can generate accurate information related to vege-
tation dynamics and their drivers, but in situ observations are costly,
time-consuming and spatially limited (Li et al., 2006; Xiao et al.,
1995). Due to the large area coverage and long time span, satellite
based imagery has become a widely used tool in ecological conserva-
tion and one of the most important data sources for monitoring vege-
tation dynamics at large scales (Nemani et al., 2003; Pettorelli et al.,
2005; Tucker et al., 2001). The normalized difference vegetation in-
dex (NDVI), based on the red and near-infrared spectrum, has shown
to be efficient for sensing the green vegetation and monitoring global
and regional trends as well as the variability of vegetation (Huete et
al., 2002; Pinzon and Tucker, 2014; Running and Nemani, 1988). For
areas of pronounced seasonality (as in this study), the growing season
NDVI (GSN) has proven to be a robust approximation of the biomass
production of a given year (Mbow et al., 2013; Tong et al., 2016).

Several studies have applied NDVI time series in China showing a
recent increase in vegetation productivity in the karst regions (Cai et
al., 2014; Tong et al., 2014; Xu and Zhang, 2014; Wang et al., 2007).
Yet, it remains to be determined if these positive vegetation trends are
driven by climatic or human factors and if any relationships are linked
to ERPs implementation. Moreover, the time series analysis based on
a short period, do often not meet the requirements of covering both pre
and post conditions of the temporal dynamics of vegetation changes in
relation to implementation of ERPs, and trends are usually not linear
over a longer period.

Applying a long term Earth Observation (EO) data set allows to
separate human activities from climatic influences on vegetation dy-
namics by developing a NDVI-climate model, and monitor the resid-
uals between observed and predicted (using climate variables) vege-
tation trends (Archer, 2004; Evans and Geerken, 2004; Herrmann et
al., 2005; Wessels et al., 2007). A number of researchers have realized
that it was unreasonable to develop NDVI-climate models by using
data over the full time series without considering the existing human
impacts, especially the large scale implementation of ERPs in recent
years (Cao et al., 2006; Horion et al., 2016; Wang et al., 2009). Theo-
retically, it could be done by introducing a turning point and establish-
ing the model on a reference period of little human interference to pre-
dict the vegetation for a period which is supposed to be heavily influ-
enced by humans (Cao et al., 2006; Wang et al., 2009; Li et al., 2011).
However, the turning point is usually defined a priori to EO time se-
ries analysis. Here, we propose an approach for identifying the turning
point from the vegetation time series itself to define a reference pe-
riod that ERPs’s impact was not detectable. Without additional infor-
mation (e.g. statistical or field data), interpretations of residual trends
are speculative and the assessment of the efficiency of ERPs remains
unclear. With the combination of the 30 years time-series of NDVI
(GIMMS-3g) and climate data (temperature and rainfall), we distin-
guish the trends in human-induced vegetation change with statistical
data of ERPs, more specifically the Grain to Green Program, which
aims at converting farmland to forest and grassland (Jia et al., 2014;
Liu et al., 2014).

The overall objective of this study is thus to assess the effective-
ness of ERPs (implemented by the state and local Chinese govern-
ments) on long-term vegetation dynamics across Southwest China in
recent decades. This is achieved by (1) removing the effects of climate
(rainfall and temperature) thereby highlighting human induced vege-
tation changes, and (2) relating the human-induced vegetation trends
to the project funds invested at county scale.

2. Study area and data sets

2.1. Study area

The study area includes the Yunnan, Guizhou and Guangxi
Provinces, Southwest China (Fig. 1a). Dominated by monsoon cli-
mate, the study area has a mean annual temperature of 17.6 °C and
a mean annual precipitation of 1021 mm. The region has high land-
scape heterogeneity with a large altitudinal difference from North-
west of Yunnan Plateau (about 4000 m a.s.l.) to lowland area such as
the Xunjiang Plain (about 30 m a.s.l.) (Fig. 1b). The major land cover
types are evergreen and deciduous shrubs (42%), evergreen needle
leaf forests (17%), evergreen and deciduous broad leaf forests (15%),
evergreen broad leaf forests (12%) and farmland (10%) (Wang et al.,
2007). The bedrock of the karst regions are dominated by pure car-
bonate (25%) and impure carbonate (23%) whereas the bedrock for
the rest of the region consists of clastic rocks (non-karst region) (Tong
et al., 2009). The study area can be divided into eight (project-) re-
gions based on topography, lithology and geological structural condi-
tions (Yuan, 2014) (Fig. 1c). In this study, the Grain to Green Program
serves as a representative ERP which started in 2000 and was imple-
mented within administrative units. The program compensates partic-
ipating farmers for converting their cropland back to forest or grass-
land with a cash subsidy, grain subsidy, and free saplings at the start
of reforesting (SFAB, 2000; Trac et al., 2007).

2.2. Data and processing

This study uses the GIMMS NDVI 3g, available in a bimonthly
temporal resolution of 8 km spatial resolution from 1982 to 2011
(Pinzon and Tucker, 2014). To reduce contamination caused primarily
by cloud and atmospheric variability, we calculated a monthly NDVI
by choosing the maximum value of the fortnightly data set. Then the
values from April to November were averaged to obtain the growing
season NDVI for each year from 1982 to 2011 (Tong et al., 2016).

Monthly temperature and rainfall data for 71 weather stations
within Southwest China from 1982 to 2011 were obtained from the
China Meteorological Data Sharing Service System (http://cdc.cma.
gov.cn). We applied ordinary Kriging to generate gridded fields of
temperature and rainfall with the same resolution and geographic co-
ordinate system as those of the NDVI data set. County level statistical
data of the Grain to Green Program including project areas (e.g. ar-
eas for mountain closure, afforestation, and cropland conversion) and
funding (e.g. money allocated for grain and seeding, and cash) from
2001 to 2011 were provided by the Forestry Bureau of the Yunnan,
Guizhou and Guangxi Provinces.

3. Methods

A linear regression was applied to detect and analyze trends in an-
nual GSN. The slope of the regression was derived as an indication
of the direction and magnitude of trends (Fensholt and Proud, 2012;
Tong et al., 2016). The GSN trends were categorized into three types:
increase (positive slope), decrease (negative slope) and stable (no sig-
nificant slope at the 95% level).

In the present study, we utilized the Sequential version of
Mann-Kendall test statistic (Mohsin and Gough, 2009) to detect a po-
tential turning point in the annual GSN trend. This technique calcu-
lates two statistical measures, which are the sequential values of a re-
duced or standardized variable (Chatterjee et al., 2014). A forward
sequential statistic is estimated using the original time series, and a
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Fig. 1. (a) Location of the study area in China, (b) Elevation of the three provinces of the study area, (c) Location and classification of the different project regions: (I) Peak Cluster
Depression, (II) Peak Forest Plain, (III) Karst Plateau, (IV) Karst Gorge, (V) Karst Trough Valley, (VI) Karst Basin, (VII) Middle-high Hill and (VIII) non- karst region respectively,
(d) The administrative counties of the study area.

backward sequential statistic is estimated in the same way but starting
from the end of the series. The year of the intersection between the
curves of the two statistics indicates a potential turning point, which
is tested for its significance at the 95% level (p < 0.05). For details on
the method we refer to Chatterjee et al. (2014).

Assuming that this turning point was caused by the efforts of ERPs,
we used this year to separate the time series into two periods. The first
period (named reference period hereafter) was characterized as a base-
line (reference) where vegetation was not strongly affected by ERPs.
The second period (named conservation period hereafter) was charac-
terized by the implementation and efforts of ERPs.

In order to separate climate from human induced vegetation trends,
we applied the widely used residual trends method (Evans and
Geerken, 2004; He et al., 2015; Huber et al., 2011; Li et al., 2012;
Wessels et al., 2007). To better reflect the impacts of ERPs on vegeta-
tion changes, we used the first (reference) period (rather than the entire
period) to develop the multiple regression models between NDVI (re-
sponse variable) and climate factors (temperature and rainfall as pre-
dictors) based on monthly observations. Local conditions (such as ge-
omorphology, hydrology and soil) may influence the relationship be-
tween NDVI and climatic variables, and this is especially important in
the highly fragmentized terrain of Southwest China. To take this into
account, we applied a pixel-based regression, i.e. the NDVI-climate
model was calculated for each pixel (Evans and Geerken, 2004). Thus,
the NDVI-climate regression model using the monthly data from the
first period is given in Eq. (1).

Where, i is the location of a pixel; identifies the month; a is the re

gression coefficient of NDVI and temperature (Temp) of month;
b is the regression coefficient of NDVI and precipitation (Prec) of

month; c is a constant. Only those regions with a significant corre-
lation between NDVI and climate (95% level) were kept and the re-
gression coefficients were used to predict the monthly NDVI for the
conservation period and generate the predicted GSN for these years
(which is assumed to be climate driven only). We then calculated the
residuals between the observed GSN and the predicted GSN for the
conservation period. These residuals are expected to reflect the hu-
man signal, i.e. the vegetation trends which cannot be explained by
climate. The temporal trend of the GSN residuals was used to monitor
human-induced vegetation trends and termed alike in the following.
No trend over time means an insignificant impact of human activities
on vegetation trends (no significant impact); a decreasing trend indi-
cates vegetation degradation presumably induced by human activities
(negative impact); and an increasing trend suggests improved vegeta-
tion conditions which cannot be explained by climate and may be at-
tributed to conservation and restoration efforts (positive impact).

To validate these assumptions, we related statistical data on pro-
ject areas (in km2) of the Grain to Green Program at county level with
human induced vegetation trends detected by remote sensing within
the same county. Project areas were grouped into 4 classes: 0–50 km2

(class 1), 50–100 km2 (class 2), 100–200 km2 (class 3), >200 km2

(class 4). As a linear comparison between pixels and project areas is
not feasible due to the effectiveness variability between counties, we
applied a t-test and box plots to test the differences in the mean value
of classes.

In order to assess the project effectiveness, we developed a Project
Effectiveness Index (PEI). The PEI is calculated as follows:

(1)
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where refers to the project intensity, which is the ratio of the sum
of the invested funding to the project areas for the conservation pe-
riod in county i after normalization (ranging from 0 to 1). is the
ratio of pixels with significant increasing residual trends (human in-
duced trends) in the county i (ranging from 0 to 1). Counties without
any pixels of significant increasing residual trends were omitted from
further analysis. When equals 0, the reaches a minimum; when

equals 1 and is the lowest of all counties, then the reaches
the maximum. Consequently, the ranges from 0 to and a
small/high indicate high/low project effectiveness. We classified
the counties into three types based on their values to assess the
level of project effectiveness. Our experimental test showed that a

value less than 1 is deemed as high project effectiveness. Values
between 1 and 10 are classified as moderate project effectiveness and
values greater than 10 are assigned low project effectiveness.

4. Results

4.1. Vegetation trends and the turning point

At regional scale, the GSN has increased significantly at the rate
of 0.002 GSN year−1during 1982–2011 (p = 0.002). However, the
GSN trends are not monotonically increasing over the entire period.
Mann-Kendall test statistics showed that the backward trend of an-
nual GSN of the entire study area intersects the forward trend in the
year 2001, which was identified as a turning point (Fig. 2a). The GSN
trend was unstable prior to 2001 but steadily positive after this year
(Fig. 2b). Based on this turning point, we found an overall insignifi-
cant (p = 0.98) decreasing trend for the reference period (1982–2000)
and a moderate significant increasing trend (90% level; p = 0.07) for
the conservation period (2001–2011) (Fig. 2b).

At pixel scale (8 km), the trends in annual GSN over the last 30
years showed distinct spatial differences (Fig. 3a). Whereas 45% of
the study area had no significant trend (stable), a significant uptrend
(increase) was found for 54% of all pixels, mostly concentrated in the
Guangxi and Guizhou Provinces. In contrast, only 1% of the study
area showed a significant downtrend (decrease) mostly located in the
Yunnan Province. Trends in vegetation changes vary greatly between
the reference and conservation period (Fig. 3b, c). In the reference
period, 94% of the study area showed no significant trend and only
4% and 2% were characterized by significant increasing and decreas

ing (concentrated in the Guizhou Province) trends respectively. How-
ever, during the conservation period, vegetation significantly in-
creased in 19% of the area (primarily in the Guangxi Province). Dur-
ing the conservation period, downtrends were found in the Yunnan
Province accounting for 2% of the study area. The slope difference be-
tween these two periods also showed distinct spatial differences (Fig.
3d). Regions where the GSN slope during the conservation period was
greater than the reference period (a sign of vegetation growth accel-
eration) covered 72% of the study area. The largest slope difference
(greater than 0.04 GSN year−1) was mainly observed in the Guangxi
Province. Areas where the GSN slopes during 2001–2011 were lower
than that prior to 2001 (a sign of vegetation growth deceleration) were
located especially in the Yunnan Province.

4.2. Human induced vegetation trends

The majority (96%) of the pixels had a significant (p < 0.05) cor-
relation between NDVI and climate variables (rainfall and temper-
ature) and the analysis was subsequently focused on these regions.
Here, 16% showed a significant impact from human activities, with
about 1% of the pixels having a significant negative human induced
trend and 15% a significant positive trend (Fig. 4a). Human activities
showed no significant impact on vegetation dynamics in other regions
(84%). Negative trends were found mainly in the middle and east of
the Yunnan Province. Here, vegetation growth was lower than it was
expected from the climate dynamics, indicating human activities pre-
sumably induced the vegetation degradation (negative impact). Posi-
tive trends were mostly located in the Guangxi Province, the west por-
tion of the Guizhou Province and the southwestern part of the Yunnan
Province. Vegetation in these regions has been greening up to a larger
extent than explained by climate alone, suggesting the improved vege-
tation conditions may be attributed to conservation and restoration ef-
forts (positive impact).

The averaged GSN residuals of each province all showed an in-
creasing trend, but only in the Guangxi Province the trend is moder-
ately significant (90% level; p = 0.064). We calculated the mean slope
of pixels where the human induced trend was significantly positive for
each province, and found the strongest trends located in the Guangxi
Province (0.0104 GSN year−1), followed by Guizhou (0.0088 GSN
year−1), and the Yunnan Province (0.0080 GSN year−1). This indicates
that the ERPs implemented in the Guangxi Province had a larger posi-
tive effect on vegetation than in other provinces. The Yunnan Province
had the most negative human induced trends (−0.0075 GSN year−1),
followed by the Guangxi Province (-0.0067 GSN year−1), and no neg-
ative human induced trends were found in the Guizhou Province.
This indicates that on-going degradation caused by human activities is
mostly pronounced in the Yunnan Province.

Fig. 2. (a) Abrupt changes in annual GSN as derived from Mann-Kendall test statistics, using a forward and backward sequential statistics calculation approach. The year of the
intersection is the potential turning point. (b) GSN inter-annual variations and linear trends for the two periods (1982–2000 and 2001–2011).

(2)
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Fig. 3. (a–c) Vegetation trends for different periods (a: 1982–2011, b: 1982–2000 and c: 2001–2011) based on the GSN. (d) Vegetation trend slope difference of the reference
(1982–2000) and conservation (2001–2011) periods.

Fig. 4. (a) Human induced vegetation trends grouped into significantly positive, negative, and no trend. Pixels without a significant relationship between climate and NDVI are shown
in black. (b) The project areas (in km2) are compared for counties without and with significant positive human induced trends. (c) The number of pixels with positive human induced
trends is compared with the project area (in classes) per county.
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4.3. Relationship between human induced trends and the intensity of
ERPs implementation

There is a strong significant (p = 0.004) relationship between pro-
ject areas (in km2) and positive human induced trends at county scale
(Fig. 4b), supporting the methodological assumption of extracting hu-
man induced trends. It is clearly shown that positive trends are mostly
found in counties with larger project areas and a relation between
the number of pixels with positive trends and project area can be
observed (Fig. 4c). However, the difference between the groups is
not significant and the variation between counties is considerable as
larger area does not always imply more positive trends (Fig. 4c). To
account for this, we introduce two measures relating the significant
(95% level) positive human induced trend with statistical data on con-
servation projects: (1) the project intensity (a measure of the fund

ing invested per area) and (2) the PEI (a measure of the project ef-
fectiveness). At county scale (Fig. 1d), we found 90 counties (out of
291 in total) without any significant increasing human induced trend,
indicating no significant project effectiveness. Most of these coun-
ties were found in the Yunnan and Guizhou Provinces (Fig. 4a). The
shares of pixels with significant increasing human induced trends in
other counties were between 0.01 (1%) and 0.86 (86%), with PEI
ranging from 0 to 39.

Counties were grouped according to the project effectiveness
(high, moderate and low effectiveness) (Fig. 5a–c), comparing the
project intensity with the percentage of pixels with a significant pos-
itive human induced trend. In total, 55 counties were characterized
by a high project effectiveness (PEI < 1) (Fig. 5a) and most of them
were concentrated in the Guangxi Province (Fig. 5d). Moderate pro-
ject effectiveness (PEI between 1 and 10) was found in 115 counties
(Fig. 5b). In 31 counties the project effectiveness was low (PEI > 10)

Fig. 5. Relationships between the percentage of pixels with significant increasing human induced vegetation trend in a county and the normalized project intensity (funding invested
per area). (a) Counties with high project effectiveness; (b) counties with moderate project effectiveness; (c) counties with low project effectiveness. (d) Spatial distribution of the
levels of project effectiveness at the county scale and (e) levels of project effectiveness per project region (see Fig. 1c) with associated mean rainfall and elevation.
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and these were mainly located in the Yunnan Province (Fig. 5c and
Fig. 5d). At county scale, a clear relationship is observed between
the invested funding per area (project intensity) and the percentage of
positive human induced trends. This relationship is most pronounced
in counties with high effectiveness (r2 = 0.41, p < 0.01, slope = 0.8),
and weakens for the groups with moderate (r2 = 0.30, p < 0.01,
slope = 0.4) and low effectiveness (r2 = 0.22, p < 0.01, slope = 0.04).

4.4. Spatial differences of vegetation trends under different karst
landforms

Differences in vegetation trends between project regions were an-
alyzed for the entire study period, reference period and conserva-
tion period respectively (Fig. 6). The vegetation showed an overall
improvement in most of the regions during the entire study period
(1982–2011). More specifically, vegetation in the Karst Trough Val-
ley region (V) shows the largest share of increasing vegetation trends
(about 83%), followed by the Karst Peak Forest Plain (II) (78%) and
Karst Plateau (III) (69%). Vegetation in other regions showed no sig-
nificant trends, especially in the Middle-high Hill region (VII) (73%)
and Karst Basin region (VI) (64%). Only a small percentage of the
pixels were found to have a decreasing trend. With 2% in the Karst
Basin (VI) and the Karst Gorge region (IV), these are the only regions
with a noticeable share of significant decreasing vegetation trends.

If split into two periods, most pixels during the reference period
(1982–2000) showed no significant trends (stable), especially in the
Karst Trough Valley (V) (99%) and Karst Plateau (III) (98%). The
largest share of significant positive trends (increase) was detected in
the Peak Forest Plain region (II) (10%) and the Karst Gorge region
(IV) (7%), respectively.

Regarding human induced vegetation trends during the conserva-
tion period (2001–2011), most pixels in each region (76%) were in-
significant, showing no significant impact of human activities, espe-
cially in the Karst Trough Valley (V) (95%) and Karst Basin regions
(VI) (94%). The percentage of pixels with increasing human induced
vegetation trends in the Peak Forest Plain (II) and Peak Cluster De-
pression (I) regions was 23% and 22%, respectively, which was the
largest among all regions. The percentage of pixels with decreasing
human induced trends in the Karst Basin region (VI) (3%) was larger
than any other region, being an indication of ongoing human induced
degradation.

Fig. 6. The area ratio (percentage cover) of vegetation trends during different periods
(full period:1982–2011 (left bar), reference period:1982-2000 (middle bar) and conser-
vation period: 2001–2011 (right bar)) in different project regions (Fig. 1c).

5. Discussion

5.1. Effectiveness of ERPs variability between different counties

We identified the effect of invested project funds through the
implementation of Ecological Restoration Projects (ERPs) at county
scale and found varying results of the Project Effectiveness Index
(PEI) indicating different degree or extent of effectiveness of ERPs
implementation. Many of the spatial patterns of the PEI can be ex-
plained by the interplay between climatic and terrain conditions as
well as human management. In the past 30 years, the temperature of
Southwest China during the growing season increased significantly
(p < 0.01), and combined with an insignificant (p > 0.01) decrease in
rainfall (Cai et al., 2014), this has created challenging conditions for
newly planted vegetation to survive. Additionally, frequent droughts
have become a serious hazard in recent years (Guan et al., 2015; Zhai
et al., 2005). For example, the severe drought in 2009 was reported
to have adverse impact on the vegetation in the Yunnan, Guizhou
and Guangxi Provinces (Barriopedro et al., 2012). Combined with a
warm and dry climate, these extreme weather events negatively im-
pact on the survival and growth of planted trees (Wu et al., 2014).
High effectiveness of ERPs is mostly found in the Peak Forest Plain
(II) and Peak Cluster Depression regions (I) in the Guangxi Province
(Fig. 5d). These areas have much more favorable growing conditions
(24 °C and 1662 mm rainfall) than other regions (Fig. 5e). In contrast,
low or no effectiveness was detected in large parts of the Yunnan and
Guizhou Provinces and especially the Middle-high Hill (VII) and the
Karst Trough Valley (V) regions characterized by unfavorable grow-
ing conditions (17 °C and 1134 mm rainfall) and rough terrain (high
elevation and slope) show low or no effect of ERPs, in spite of high
investments.

Apart from climate and terrain, human management plays an im-
portant role for the success of ERPs. Proper management includes the
selection and planting of species adapted to local climatic conditions,
the continuous monitoring of plantations, but also the incorporation
and compensation of the local population. The Grain to Green Pro-
gram aims to transform cropland into ecologic (used for timber pro-
duction) or economic (orchards or plantations with trees for medical
use) forests. The government pays subsidies to the owner of the trans-
formed cropland for 8 years (ecologic forest), 5 years (economic for-
est) or 2 years (grassland) (Xu et al., 2004). The local peasants gener-
ally prefer to convert their cropland into forest rather than grassland to
receive a higher compensation. However, not all regions are equally
well suited for forest growth and in some areas abiotic conditions al-
low only grass or scrub to grow (Trac et al., 2007). Limited by a low
water use efficiency, planted trees grow slowly (or do not grow at all)
and the ecological value is thereby questionable (Cao, 2011; Trac et
al., 2007; Uchida et al., 2005; Weyerhaeuser et al., 2005). Hence, large
investments in tree planting do not necessarily have the expected high
effect, if the local conditions are not considered and the selection of in-
appropriate species might result in many planting failures (Cao, 2011).

The population of China is growing rapidly leading to an increas-
ing demand for food. The subsidies for conservation received by the
peasants do not compensate them adequately, which forces many
peasants to return their grass or forest back into cropland (Trac et al.,
2007). Thus, Weyerhaeuser et al. (2005) suggested that the subsidies
provided to the peasants should be more attractive and at least com-
pensate for the losses of converting the land for the sustainability of
the Grain to Green program. Peasants are willing to participate in ini-
tial planting because they are paid for their labor, but they pay less at
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tention to the protection of planted trees/grasses (especially the eco-
logical public-welfare forests), since they receive very limited or even
no compensatory payment from the government or any economic
profit for the ecological forestry. Many areas of implementation are in
regions away from urban centers without any project officers and lim-
ited access (e.g. northern Yunnan Province), thereby making it diffi-
cult for the government to monitor the successfulness of project con-
servation. This is in line with reports of unsuccessful growth of trees/
grasses in these regions (Trac et al., 2007).

In contrast to this general pattern, we identified several counties
with high effectiveness in spite of unfavorable climatic and terrain
conditions. Examples are Shidian in the Yunnan Province and also
Qiaojia and Dafang in the Guizhou Province. In depth research at the
local scale is needed to identify the reasons and drivers for success-
ful vegetation improvements in these counties. Even though the suc-
cess is not uniform, we have shown numerous areas with a positive
human induced trend, being an indication that ERPs, if properly im-
plemented, can greatly benefit China in combating rocky desertifica-
tion (Du, 2001; Xu et al., 2006; Xu and Cao, 2001). However, we also
identified areas of low and no effect in spite of high investments, and
special attention is needed in these areas to find the reasons for the un-
successfulness of ERPs implementation.

5.2. Limitations and uncertainties

Applying a remote sensing approach in ecological conservation al-
lows for rapid monitoring and mapping of project efforts for large ar-
eas over a long time period. There are, however, limitations to the ap-
proach since the proposed methodology was based on some assump-
tions, which may introduce uncertainties. Firstly, there is a trade-off
between spatial and temporal resolution. The coarse spatial resolu-
tion of the data set used (8 km) does not allow for the detection of
small scale changes, but the GIMMS NDVI 3 g data used here re-
mains the only available data set for continuous time series analysis
dating back to the 1980’s with a sufficient quality in regards to the
transition between multiple sensors involved (Tian et al., 2015). We
thus assume that conservation projects have large scale impact and
the footprint of the project efforts is homogeneous and visible within
64 km2 (8 × 8 km). This may conceal small scale degradation and es-
pecially human activities which are rarely uniform at this scale. There-
fore, the results presented primarily give insights at regional (county)
scale but less so at the local scale. However, a recent study by Tong
et al. (2016) applying MODIS data with a 250 m resolution (2001 to
2013) showed that for the Guangxi and Guizhou Provinces the over-
all spatial patterns of vegetation conditions are comparable with the
results presented here. Li et al. (2016) also applied the RESTREND
method using MODIS data for the Bejing-Tianjin Sand Source region
in China thereby providing results with more spatial details than the
current study. However, since MODIS is only available since 2000,
Li et al. (2016) were not able to develop the NDVI-climate model for
a period without project influences, which might weaken the reliabil-
ity of the assessment of the specific impact from ERPs. Secondly, this
study uses a vegetation index (NDVI) as proxy for ecosystem health.
NDVI has shown to be a function of herbaceous and woody coverage
and density, soil and vegetation color, and is also widely used to mea-
sure the chlorophyll abundance in vegetation. However, NDVI cannot
provide enough information on the vegetation and species composi-
tion. Moreover, the average NDVI over the growing season months
serves as a robust proxy for the net primary production of this period,
but does not take into account spatial and inter-annual dynamics of
plant phenology, land cover and climate.

6. Conclusions

Climate changes and human activities drive vegetation trends in
Southwest China. This study evaluated the effectiveness of Ecologi-
cal Restoration Projects (ERPs), more specifically the Grain to Green
Program, by developing a NDVI-climate model for a reference period
(1982–2000), and predicting the annual growing season NDVI (GSN)
for the period 2001–2011 to quantify the effects of ERPs implementa-
tion on vegetation trends. These human induced trends were found to
be closely related to conservation projects and the following conclu-
sions can be drawn:

(1) After a period of an overall decrease (1982–2000), vegetation in-
creased in most areas of Southwest China between 2001 and 2011.
The largest rate of increase was found in the Guangxi Province.

(2) Vegetation improvement caused by ERPs accounted for 15%,
whereas vegetation degradation induced by human activities cov-
ered 1%. Human activities showed no significant impact on veg-
etation dynamics in other regions (84%). The ERPs implemented
in the Guangxi Province had a larger positive effect on vegetation
dynamics than in other provinces. Human activities in the Yun-
nan Province had a larger negative effect on vegetation than in the
Guangxi Province.

(3) Vegetation improved more in the Peak Forest Plain and the Peak
cluster Depression than in other karst landforms during
2001–2011, whereas vegetation degradation caused by human ac-
tivities was mostly pronounced in Karst Basin regions.

(4) There was a significant relationship between positive human in-
duced trends and project intensity (funding invested per area). In
total, 55 counties of Southwest China showed high project effec-
tiveness as measured by the Project Effectiveness Index (PEI),
115 counties were characterized by moderate project effectiveness
and 31 counties had low project effectiveness. No significant ef-
fects of project implementation were detected in the remaining 90
counties.

(5) Even though areas characterized by high project effectiveness
were found, this does not apply to the entire study area, and espe-
cially areas with an unfavorable climate, rough terrain conditions
and poor management practices (unsuitable species selection, low
compensation rate for farmers) show limited or no effect of pro-
ject implementation.

(6) Remote sensing has shown to be a valuable tool for monitoring the
effectiveness of conservation project. However, the coarse spatial
resolution of the data set used leaves uncertainties which can only
be overcome by field studies combined with temporal snap-shots
of higher resolution imagery.
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