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Convergent production and 
tolerance among 107 woody 
species and divergent production 
between shrubs and trees
Wei-Ming He & Zhen-Kai Sun

Green leaves face two fundamental challenges (i.e., carbon fixation and stress tolerance) during their 
lifespan. However, the relationships between leaf production potential and leaf tolerance potential 
have not been explicitly tested with a broad range of plant species in the same environment. To do 
so, we conducted a field investigation based on 107 woody plants grown in a common garden and 
complementary laboratory measurements. The values, as measured by a chlorophyll meter, were 
significantly related to the direct measurements of chlorophyll content on a leaf area basis. Area-based 
chlorophyll content was positively correlated with root surface area, whole-plant biomass, leaf mass per 
area (LMA), and force to punch. Additionally, LMA had a positive correlation with force to punch. Shrubs 
had a higher leaf chlorophyll content than trees; however, shrubs and trees exhibited a similar leaf 
lifespan, force to punch, and LMA. These findings suggest that the production potential of leaves and 
their tolerance to stresses may be convergent in woody species and that the leaf production potential 
may differ between shrubs and trees. This study highlights the possibility that functional convergence 
and divergence might be linked to long-term selection pressures and genetic constraints.

Leaf traits of plants can control key ecological functions. For example, the carbon economy of leaves underlies 
their biomass production1,2; the structure of a leaf determines its tolerance to stresses, including drought, her-
bivory, light and temperature3,4; and leaf chemistry governs carbon and nutrient cycling5,6. Accordingly, the leaf 
economics spectrum has received increasing attention since the 1990s. For example, plant species from the tropics 
to the tundra exhibit convergence in leaf functioning7; fast-return species are characterized by having low a LMA, 
a short leaf lifespan, and high leaf nitrogen (N), phosphorus (P), photosynthesis and respiration8; tropical leaves 
are not mechanically more resistant than temperate leaves9; and the leaf economics spectrum is approximately 
distributed proportional to leaf area instead of mass10.

Studying the leaf economics spectrum has contributed much to our understanding of ecological functions 
at fine and broad scales2,7–14. Actually, the leaf economics spectrum reflects multiple signals from environments, 
phylogeny, natural selection, or even sampling. To date, few if any studies have explicitly tested the generality 
of the leaf economics spectrum in the context of the same environments. Common gardens provide an ideal 
platform for testing this generality because striking differences in climate, soils, and sampling can be eliminated 
and the legacies of evolution and selection can be highlighted. According to the worldwide leaf economics spec-
trum7,8, trade-offs between leaf production and leaf stress tolerance seem to occur among a broad range of plant 
species or between functional types. To test the generality of this prediction, we selected 107 woody species grown 
in a common garden for over 20 years and categorized them into shrubs and trees (i.e., two different functional 
types).

Here, we selected four leaf traits (i.e., LMA, force to punch, leaf chlorophyll, and leaf lifespan) as our focal 
traits for the following reasons. LMA and force to punch are two key structural/mechanical traits that determine 
the potential of plants to tolerate multiple stresses (e.g., drought, herbivory, light, and temperature)9,15,16. Leaf 
chlorophyll is linked to the production potential of plants17, and leaf lifespan reflects the duration of the ability 
of leaves to fix carbon8. We addressed two central questions: the relationship between leaf production potential 
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and leaf stress tolerance potential either across 107 woody species or between functional types. Additionally, we 
answered two secondary questions: (1) whether the value measured by a portable SPAD-502 chlorophyll meter 
(SPAD: soil and plant analysis development; hereafter referred to as SPAD values) can indicate chlorophyll con-
tent and (2) whether chlorophyll content is positively correlated with root area and biomass production.

Results
SPAD values versus direct measurements of chlorophyll. Leaf chlorophyll content, measured 
directly on the basis of leaf area, significantly increased with SPAD values for shrubs (r =  0.698, n =  9, P =  0.027) 
and trees (r =  0.7903, n =  9, P =  0.011). Figure 1 presents the relationship between SPAD values and chlorophyll 
content per unit leaf area across 18 woody species (r =  0.733, P <  0.001). Thus, SPAD values effectively indicated 
leaf chlorophyll content per unit leaf area.

SPAD values, root area, and biomass production. There was a positive correlation between SPAD 
values and root surface area (Fig. 2: r =  0.821, n =  30, P <  0.001). The whole-plant biomass of plants significantly 
increased with their SPAD values (Fig. 2: r =  0.913, n =  30, P <  0.001) and root surface area (Fig. 2: r =  0.888, 
n =  30, P <  0.001). Accordingly, individuals with high SPAD values and root area had a high potential to yield 
biomass.

Leaf traits across woody species. There were 1.8-, 3.0-, 5.4- and 1.8-fold variations in chlorophyll, LMA, 
force to punch, and leaf lifespan, respectively. These results show that different leaf traits had different levels of 
variation (i.e., force to punch >  LMA >  chlorophyll =  leaf lifespan), implying that the inherent determinants 
underlying these variations may differ, depending on trait identity.

The following results were presented in the form of phylogenetic independent contrasts (PICs). Leaf lifespan 
was not correlated to chlorophyll content (r =  0.147, n =  49, P =  0.156) and LMA (r =  0.009, n =  49, P =  0.475). 

Figure 1. Relation between SPAD values and the directly measured chlorophyll content per unit leaf area. 
Each filled circle represents the values for a given species.

Figure 2. Three-way trait relationships among SPAD values, root surface area, and whole-plant biomass. 
Each filled circle represents the values for a given individual.
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LMA increased with chlorophyll content (Fig. 3; r =  0.509, n =  107, P <  0.001), force to punch increased with 
chlorophyll content (Fig. 3; r =  0.289, n =  107, P =  0.022), and force to punch was positively associated with LMA 
(Fig. 3; r =  0.532, n =  107, P <  0.001). Accordingly, variable chlorophyll content had differential effects on force 
to punch, LMA, and leaf lifespan, and changing LMA had contrasting effects on force to punch and leaf lifespan.

Leaf traits between functional types. The PICs of leaf chlorophyll content were significantly greater 
in shrubs than in trees (Fig. 4a; P =  0.021), and shrubs and trees had similar PICs of force to punch (Fig. 4b; 
P =  0.356), LMA (Fig. 4c; P =  0.167), and leaf lifespan (Fig. 4d; P =  0.261). These results show that one of the four 
leaf traits varied significantly with life forms.

Discussion
Although the use of SPAD values is now widespread18,19, no one has explicitly calibrated SPAD values with direct 
measurements of chlorophyll content across a broad range of plant species. Our results provide substantial  
evidence that SPAD values can serve as a good proxy of direct measurements of chlorophyll content at the species  
level. This result facilitates multiple species comparisons. Additionally, we found that leaf chlorophyll and root 
surface area were coordinated and that this coordination allowed plants to exhibit a high potential to yield 
biomass.

The most novel finding of our study was that leaf production potential and leaf tolerance potential were con-
vergent across 107 woody species. This finding does not support the prediction of the worldwide leaf economics 
spectrum7,8, but it provides insights into the leaf economics spectrum at a given site. Actually, the photosynthetic 
capacity of leaves is not always negatively correlated with their structural and defensive costs. For example, tropical  
plants have a greater photosynthetic capacity and are better defended than temperate plants due to favourable 
resources and greater herbivore pressures in tropical habitats20–22. All the 107 species examined in this study have 
experienced the same climate and soil conditions since the 1980s, and all the measurements of leaf traits were com-
pleted within two weeks. Accordingly, the convergent leaf production and tolerance can be attributed primarily  
to long-term natural selection and genetic constraints.

Green leaves face two basic challenges, namely, carbon fixation and stress tolerance during their lifespan1,9,15, 
which can be incorporated into ecological strategies for balancing the cost of constructing a leaf versus the 
benefits that a leaf provides through carbon assimilation. The positive chlorophyll production relationship can 
stem from multiple causes. First, a high chlorophyll content tends to enable leaves to have high photosynthetic 
rates11,17, and LMA is positively correlated with maximum photosynthetic rates but negatively correlated with 
dark respiration8,10. Second, leaves with a high chlorophyll content have a greater LMA and are tougher, enabling 
them to be more resistant to abiotic and biotic stresses9,12,15,16. Finally, plants with a high chlorophyll content have 
a larger root surface area, enhancing their potential to absorb soil resources23. Taken together, these coordinated 
trait relations allow plants to maximize the total amount of carbon gain during their lifespan.

In the field, plants commonly face multiple stresses such as drought, temperature, and herbivory3. We found 
that leaf toughness and LMA increased with chlorophyll content. High leaf toughness and LMA help leaves have 
higher tolerance to multiple stresses by decreasing their vulnerability to stresses7–9,12,15–24. Evolutionary history 
and selective pressures contribute to this functional convergence through eliminating individuals with decou-
pled variation in production potential and multiple-stress tolerance and favouring individuals with coordinated  
variation in production potential and multiple-stress tolerance because they are key drivers of the evolution of the 
leaf economics spectrum13. Consequently, evolutionary history and natural selection shape convergent leaf trait 
relationships across 107 woody species.

LMA is positively correlated with leaf toughness16,24,25. Because LMA can be measured using simple and stand-
ardized procedures relative to leaf toughness, which is often determined using complex apparatus and approaches, 
LMA is a good proxy for leaf toughness. We found that neither LMA nor leaf toughness influenced leaf lifespan, 

Figure 3. Three-way traits relationships among PICs of leaf chlorophyll, PICs of leaf mass per area, and 
PICs of force to punch. PICs: phylogenetic independent contrasts. Each filled circle represents the values for a 
given species.
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a result contrary to previous reports9,24. This inconsistency is linked primarily to data analyses, that is, whether 
PICs are used or not. For example, LMA and leaf toughness affected leaf lifespan when these traits were analysed 
directly; in contrast, LMA and leaf toughness did not affect leaf lifespan when PICs were considered.

A second key finding of our study was that there was significant divergence in the leaf production potential 
between shrubs and trees. Specifically, shrubs had a higher leaf chlorophyll content than trees, but shrubs and 
trees had the same leaf lifespan, thereby allowing shrubs to have a greater potential to produce biomass. Shrubs 
and trees exhibited the same LMA and leaf toughness; thus, the palatability of leaves did not vary with functional 
types. Taken together, shrubs had a higher production potential but the same stress tolerance as trees. According 
to the worldwide leaf economics spectrum, leaf trait relationships may be independent of functional types7,8. 
However, our findings suggest that functional types may play an important role in shaping the leaf economics 
spectrum. This viewpoint is supported by previous findings that the differences in leaf size, N, and P occurred 
between shrubs and trees worldwide26. Our results also highlight that the legacies of natural selection matter in 
governing functional divergence between different functional types.

The patterns of leaf functional traits between shrubs and trees have several implications. For example, shrubs 
commonly experience poorer light resources relative to trees in nature. High levels of chlorophyll may be an 
adaptive strategy allowing shrubs to cope with a weak light environment. In contrast, trees have less chlorophyll 
due to richer light resources. Second, shrubs and trees had the same leaf toughness and LMA, exhibiting similar 
palatability. Third, leaf toughness determines its litter decomposition9,18,27, thus the leaves of shrubs and trees may 
share the same potential to return carbon and nutrients.

In summary, our findings suggest that convergent leaf production and stress tolerance may occur in woody 
plants and that divergent leaf production may appear between shrubs and trees. The generality of these patterns 
needs to be further tested across multiple sites. Area-based chlorophyll content values are likely to allow us to 
rapidly determine multiple leaf functions (e.g., production potential, stress tolerance, and carbon and nutrient 
returns) of intact plants in the field. More importantly, the chlorophyll-based trait spectrum might provide a 
useful basis for incorporating multiple functions into a framework.

Figure 4. Comparisons of PICs of leaf chlorophyll. (a), PICs of force to punch (b), PICs of leaf mass per area 
(c), and PICs of leaf lifespan (d) between shrubs and trees. PICs: phylogenetic independent contrasts. The data 
are expressed as the mean +  1 SE.
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Methods
Study garden. We conducted this study at the Botanical Garden of the Chinese Academy of Sciences 
(BGCAS: 39.98°N, 116.20°E, 80 m; close to the Fragrant Hills and 30 km from downtown Beijing). The BGCAS 
is located in a warm temperate region and is characterized by cinnamon soil (a type of soil), a mean annual tem-
perature of 12 °C, and a mean annual precipitation of 500 mm. Our focal garden occupies a 300 ×  200 m area (i.e., 
a smaller garden within the larger BGCAS) so that climate, parent material, hydrology, topography, and previous 
land use are relatively homogeneous. Since 1955, a number of different plant species across China have been 
transplanted to the BGCAS.

Chlorophyll calibration. Although SPAD values have been widely used18,19, no study has explicitly cali-
brated the relations between SPAD values and direct measurements of the leaf chlorophyll content across a range 
of plant species. To do so, we randomly selected nine shrubs and nine trees from the species pools at the BGCAS 
(see Supplementary Table S1). We selected 3-5 fully developed leaves from each of the 10 individuals per species 
to measure their chlorophyll with SPAD-502 (Konica Minolta, Japan) in July 2012, six readings per leaf were 
recorded, and all readings per individual were averaged. We harvested these leaves and took them to the labo-
ratory for directly measuring the leaf chlorophyll content. Chlorophyll was determined spectrophotometrically 
by measuring the absorbance of the extract at various wavelengths. Leaf punches were weighed and then placed 
in 10-mL centrifuge tubes with a 9-mL mixture of 95% ethanol and 80% acetone (v:v =  1:1). This extraction was 
stored for 24 h in the dark. Finally, we recorded the absorbance of each tube at A663 and A645. The total content of 
leaf chlorophyll a and b was calculated on the basis of leaf area and mass, respectively.

Growth experiment. To quantify the relationships of SPAD values with root surface area and biomass pro-
duction, we conducted an experiment because it is impossible to quantify these relationships in the field. All 
plants from seed were grown in 1-L pots filled with local soil. This experiment lasted five months from May to 
September 2013. Prior to harvest, we selected five leaves per plant for measuring their chlorophyll with SPAD-
502. At the end of the experiment, all plants were harvested, and root surface area was determined by scanning 
with WinRHIZO/WinFOLIA (Regent Instruments, Canada). All the materials were oven-dried at 85°C for 48 h 
and then weighed. There were 30 replicates.

Trait measurements in situ. All focal leaves met the following requirements: broad leaves and exposed to 
sunlight; the numbers of individuals per species were all greater than 10. Accordingly, 107 woody plant species 
were available in the common garden, including 60 tree species and 47 shrub species (totalling 35 families, see 
Supplementary Table S1). We excluded all other plant species that did not meet the above-mentioned criteria. We 
measured leaf chlorophyll, leaf toughness, and LMA in July 2010.

Five fully developed leaves from each of the 10 individuals per species were selected to measure chlorophyll 
with SPAD-502. All 10 readings per individual were averaged. We measured 107 different plant species. Each of 
these species was represented by 10 individuals.

We collected three fully expanded leaves from each of the 10 individuals per species and then sealed them in 
plastic bags to avoid a loss of turgor pressure. Each leaf was tested for mechanical strength using a general testing 
machine (5542, Instron, Canton, MA, USA). A flat-ended, sharp-edged cylindrical steel punch (diameter 1.2 mm) 
and a steel die with a sharp-edged hole with a small clearance (0.2 mm) were used. The punch and die were 
installed in the general testing machine, the punch was placed to pass through the middle of the hole of the die 
without any friction, and the punch speed was kept constant (20 mm min−1). This punch-and-die test was applied 
to randomly selected intercostal lamina (between secondary veins) for each leaf (two measurements per leaf). We 
measured 107 different plant species, each with 10 individuals.

After the measurements of force to punch, the areas of all the leaves were determined by scanning with 
WinRHIZO/WinFOLIA. All leaves were oven-dried at 75 °C for 48 h and then weighed. LMA was calculated by 
dividing the dry mass (g) by the leaf area (m2). We measured 107 different plant species, each with 10 individuals.

We determined leaf lifespan from a periodic census of tagged leaves. Because the measurements were 
labor-intensive, we measured the leaf lifespan in 56 selected species. In spring 2012, we tagged individual leaves 
when they unfolded for the first time and recorded whether they were alive or dead at two-week intervals. The 
tagged leaves were situated on four twigs on each of the nine individuals per species. Accordingly, we tagged 36 
leaves per species at the beginning of this census. After the census, we calculated the lifespan for each individual 
leaf and took the average for each species. Due to conditions induced by artificial disturbances at the site, 49 spe-
cies were available for leaf lifespan measurements, including 29 trees and 20 shrubs (see Supplementary Table S1).

Data analyses. We attempted to test whether there was a correlation between SPAD values and direct meas-
urements of the chlorophyll content across multiple species. For this purpose, we calculated the Pearson correla-
tion coefficients. We found that SPAD values were correlated with the direct measurements of chlorophyll content 
based on leaf area but not leaf mass. Therefore, we selected area-based chlorophyll content as a variable for the 
following analyses.

The purpose of the controlled experiment was to quantify the three-way relationships among leaf chlorophyll, 
root surface area, and current-year production. Accordingly, we calculated the Pearson correlation coefficients to 
determine the relationship between the chlorophyll content and root surface area and how whole-plant biomass 
varied with chlorophyll content and root surface area.

To avoid non-independence among species, we calculated the PICs of leaf chlorophyll, force to punch, LMA, 
and leaf lifespan. Specifically, we created two plant phylogenies: one included 107 species for chlorophyll, LMA, 
and force to punch, and the other included 49 species for leaf lifespan. We created these two phylogenies using 
‘Phylomatic’ software online (http://phylodiversity.net/phylomatic/). To resolve polytomies, randomization 
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was performed with the ‘multi2di’ function in the ‘picante’ package28,29. The PICs were calculated using the ‘pic’  
function in the ‘picante’ package (R3.0.1, R Development Core Team). To answer our first central question  
(i.e., relationships between leaf production potential and leaf stress tolerance potential across 107 woody species), 
we used correlation analyses to determine the three-way relationships of PICs of leaf chlorophyll with the PICs 
of LMA and force to punch. Additionally, we determined the relationship either between the PICs of LMA and 
the PICs of force to punch or between the PICs of leaf chlorophyll and the PICs of leaf lifespan using correlation 
analyses. This approach is valid for two reasons. LMA and force to punch are linked to the potential of leaves to 
tolerate stresses, and leaf chlorophyll and lifespan are associated with the potential of leaves to produce biomass.

To answer our second central question (i.e., comparisons of leaf production potential and leaf stress tolerance 
potential between shrubs and trees), we used a one-way analysis of variance to test the differences in PICs of leaf 
chlorophyll, force to punch, LMA, and leaf lifespan between shrubs and trees. All of these statistical analyses were 
performed with SPSS 13.0 (SPSS Inc.).
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