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Technical note:  
Characterisation of loess soils using near 
infrared photoacoustic spectroscopy
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The photoacoustic spectroscopy (PAS) technique has emerged as a valuable tool for the study of soil materials. The present work devel-
oped the experimental set-up for near infrared (800–2400 nm) photoacoustic spectroscopy (NIR-PAS), which consists of photoacoustic 
(PA) accessory, tungsten bromine lamp, monochromator, chopper and lock-in-amplifier, and this spectrometer was first applied to 
record the spectra of soils (n = 50) collected from the Loess Plateau of China; partial least-squares regression (PLSR) models and 
leave-one-out cross-validation were used to predict soil organic matter (SOM), clay, carbonate and available phosphorus content. The 
spectra varied among different soil samples; SOM played an important role in the spectral appearance, and the intensity and position 
of five typical absorption bands significantly shifted owing to the variances in the components and structure of SOM. The PLSR model 
demonstrated a good performance in the prediction of SOM with a root mean square error of 2.5 g kg–1 and a ratio of standard deviation  
to prediction error of 2.3. This pilot study demonstrates that NIR-PAS exhibits typical infrared absorptions and may be suitable for 
analysing  soil samples.
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Introduction
Near infrared spectroscopy (0.8–2.5 µm, i.e. 12,500–4000 cm–1) 
has been widely used for soil proximal sensing owing to the 
advantages in terms of cost and portability of the instru-
ments.1,2 Over the last 30 years, photoacoustic spectroscopy 
(PAS) has attracted the attention of researchers.3–6 These 
methods emerged as valuable tools for optical and thermal 
characterisation of a wide range of samples offering signifi-
cant improvements (high sensitivity and precision) over tradi-
tional methods. PAS is based on the principle of detection of 
non-radiative relaxation energy, resulting when molecules of 
the sample are excited from the ground state to higher energy 
states, by a periodic absorption of radiation. Non-radiative 
relaxation processes (such as collisions with other molecules) 
lead to local warming of the sample matrix; pressure fluctua-

tions are then generated by thermal expansion, which can be 
detected by a very sensitive microphone. The resulting spec-
trum differs from both equivalent transmittance and reflec-
tance spectra, since the technique detects non-radiative tran-
sitions in the sample. The suitability of the PAS technique lies 
in the fact that it can be applied irrespective of the physical 
state of the samples (including solid and gas samples). It is 
a non-destructive technique that can be applied in opaque, 
transparent and highly scattering samples such as biological, 
chemical and even geological samples and possibly soils.7–9 
Specific portable and cheap PAS instrumentation for gas 
sampling has come into use,10 thereby potentially leading to 
rapid fast soil analysis; thus, the objective of this pilot study is 
to explore the feasibility of NIR-PAS in soil analysis.
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Materials and methods
Soil samples (n = 50) were randomly collected from agricul-
tural fields located at the Loess Plateau of China (Figure 1) 
at a depth of 0–20 cm. Upon returning from the field, samples 
were air-dried at room temperature and passed through a 
2 mm sieve. Soil organic matter (SOM), clay, carbonate content 
and available P (Olsen P) were determined using routine 
methods:11–12 the potassium dichromate method was used for 
SOM determination, the wet disperse method for clay deter-
mination and the gasometric method for carbonate determi-
nation, and Olsen P was extracted by NaHCO3. The measured 
values of these parameters are shown in Table 1.

Spectrometer set-up
A schematic diagram of the experimental set-up used in 
the present study is shown in Figure 2. Helium was used to 
purge the PA cell, and nitrogen gas was used to remove the 
vapour and CO2 in the instrument. The near infrared range of 
800–2400 nm was involved; carbon black was used to optimise 
the chopping frequency and was used as reference in the 
spectra scan of soil samples with a resolution of 8 nm.

Reflectance NIR spectra were also recorded (FieldSpec® 
Pro, ASDI, Boulder, CO), and the wavelength range was in the 

range of 800–2400 nm with a resolution of 4 nm. Thirty-two 
scans were taken and averaged.

Data processing
Spectra (NIRS spectra and PAS spectra) were preprocessed 
with a smoothing filter (first-order Savitzky–Golay filter with a 
23-point window).13 The filtered spectra were then normalised 
for use, and the functions of “mapstd” and “filtfilt” in software 
Matlab 7.8 (Mathworks, Natick, MA) was used to smooth and 
normalise the spectra data, which were used for statistical 
analyses described below.

A quantitative analysis of the NIRS spectra and PAS spectra 
was performed using partial least-squares regression 
(PLSR). The detailed PLSR algorithm used in the analysis 
was well described by Geladi and Kowalski.14 Leave-one-out 
cross-validation  was conducted in the prediction. The number 
of PLSR factors was optimised by increasing the number 
of components  to the point where the validation error (root 
mean  square error, RMSE) and determination coefficient 
did not change substantially with further increases in PLSR 
factors.8
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Figure 1. Soil-sampling locations (50 soil samples were collected from National Changwu Experimental Station for Water 
Conservation ).

Table 1. Sample mean and range of selected soil properties (n = 50).

Organic matter (g kg–1) Clay (%) Carbonate (%) Olsen P (mg kg–1)
Mean 17.4 13.0 9.2 81
Maximum 28.6 15.8 12.9 219
Minimum  7.2  9.6 4.3 5.2
SD  4.1  1.7 1.6 46
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where y and y¢ denote the predicted and actual values, respec-
tively, and n is the number of soil samples.

Bias was calculated as:
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where y� and y¢ denote the mean of predicted value and actual 
value, respectively, and n is the number of soil samples.

The ratio of standard deviation of each soil parameter to 
prediction error (RPD) was also calculated to confirm the opti-
mised PLS factors:

 RPD = SD / RMSEV (3)

where SD is the standard deviation in calibration set, and 
RMSEV is the root mean standard error (RMSE) in cross-
validation .

IQ is a parameter to express deviation instead of SD for a 
sample set with non-Gaussian distribution and was calculated 
as:

 IQ = Q3 – Q1 (4)

where Q1 refers to the value below which 25% of the samples 
are included, and Q3 refers to the value below which 75% of the 
samples are included.

RPIQ was then calculated as a similar parameter of RPD to 
evaluate the model performance:15

 RPIQ = IQ / RMSEV (5)

Matlab 7.8 software was used to analyse the spectral data.

Results and discussion
Variation of PA signal with chopping 
frequency
In general, the PA signal decreased with increasing chop-
ping frequency; the intensity of the PA signal was strongest 
at around 900 nm and then significantly decreased with the 
increase in wavelength; and the PA signal was very weak when 
the wavelength was higher than 2000 nm.

12 

Figure 2 Schematic diagram of photoacoustic spectrometer. (1) LHT150 QTH, 
Zolix, China; (2) model SR-540, Stanford, USA; (3) Omni-λ150, Zolix, China; (4) 
Model300, METC, USA; (5) model SR-810, Stanford USA; (6) software of 
Zolixscan, Zolix, China. 
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Figure 2. Schematic diagram of photoacoustic spectrometer. (1) LHT150 QTH, Zolix, China; (2) model SR-540, Stanford, USA; 
(3) Omni-l150, Zolix, China; (4) Model 300, METC, USA; (5) model SR-810, Stanford USA; (6) software from Zolixscan, Zolix, China.
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Figure 3 Near infrared photoacoustic spectra of loess soils (typical bands and 
position were indicated). a, loess soil with low organic matter content (0.72%); b, 
loess soil with median organic matter content (1.53%); c, loess soil with high 
organic matter content (2.89%)  
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Figure 3. Near infrared photoacoustic spectra of loess soils 
(typical bands and position were indicated). (a) Loess soil with 
low organic matter content (0.72%); (b) loess soil with median 
organic matter content (1.53%); (c) loess soil with high organic 
matter content (2.89%).
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The PA signal was inversely proportional to the frequency in 
the range 10–40 Hz, but the variation of PA signal was not the 
same, and the PA signal decreased faster at a high frequency 
(this has been verified for an optically opaque solid).16

Though the PA signal intensity was high in the low chopping 
frequency, the signal was noisier while it was smoother at a 
higher chopping frequency. The signal-to-noise ratios were 
around 6.2, 10.5, 9.3 and 8.9 for the chopping frequencies of 
10 Hz, 20 Hz, 30 Hz and 40 Hz, respectively. Therefore, 20 Hz 
was selected to record the soil spectra used in the followed 
characterisation.

NIR-PAS spectra of loess soils
The NIR-PAS spectra (800–2400 nm) of loess soils are shown 
in Figure 3; five bands can be clearly observed in the spectra 
for the loess soils.

The assignments of absorption bands are indicated in 
Table 2, mainly appearing as O–H, N–H, C–H and C–O overtone 
and combinational vibrations. The bands of metal oxides are 
usually located at less than 800 nm, and the bands of some 

other clay minerals, such as carbonate and smectite, are 
located at 2000–2400 nm.17–21 Theoretically, these vibration 
bands can be used to qualify the SOM content. However, some 
of these bands are not applicable for estimating carbonate 
content because of the weak absorption intensity and/or inter-
fering vibrations associated with other soil components (e.g. 
soil carbonate and soil mineral clay) (Table 1). Therefore, a 
multivariate data analysis is required to extract hidden infor-
mation in the infrared spectra.

PLSR modelling of soil parameters
The statistics results associated with PLSR modelling for SOM 
based on total spectral range are shown in Figure 4. Better 
prediction performances were obtained, followed by Olsen P 
(Table 3), while the predictions were relatively poor for clay; 
the predictions using NIR-PAS were the same as or slightly 
better than that using reflectance NIRS. Therefore, NIR-PAS 
indicated the potential of soil analysis as an alternative tech-
nique.

The distribution of SOM in the soils studied (n = 50) deviates 
greatly from a normal distribution curve. Therefore, a more 
robust index, RPIQ instead of RPD calculation, was suggested 
by Bellon-Maurel et al.15 Calculations of this metric may be 
more reasonable for soil science applications and are included 
in Table 3.

Although a satisfactory prediction was obtained using the 
NIR-PAS technique in this pilot study, since knowledge about 
the application of NIR-PAS in soil analysis is very limited much 
more effort should be made as regards NIR-PAS spectra 
acquisition as well as spectral data analysis (data mining). For 
the spectral acquisition, the NIR-PAS instrumental set-up and 
spectra scanning parameters need to be further optimised, so 
that spectra with more abundant soil information as well as 
less subjective and systematic interferences can be recorded; 
for the spectral data analysis, more soil samples and soil 
types, soil properties as well as suitable chemometric tools 
should be involved in the pretreatment (filter, normalisation, 

Table 2. Tabulated infrared bands assigned to molecular structure 
in the near infrared range (800-2400 nm).

Wavelength (nm) Assignment References
880, 896, 928 O–H third overtone 17, 18 
1152, 1192 N–H second overtone 19, 20 
1288 C–H second overtone 18, 19, 21
1424 O–H first overtone 17, 19, 21 
1592 N–H first overtone 19, 21 
1704 C–H first overtone 18, 19, 21 
1864 O–H combination 17, 19, 21 
1928 N–H combination 19, 21 
1968 C–H combination 17, 20 
2144, 2184, 2216 C–O combination 18, 20 
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Figure 4 The linear regression between reference SOM values and predicted 
SOM values using NIR-PAS and reflectance NIRS based on PLSR modeling and 
leave-one-out crossvalidation (n = 50). For NIR-PAS, the optimized PLS factors 
were 10, 12, 11 and 6 for SOM, clay, carbonate and Olsen P, respectively, while 
for reflectance NIRS, the optimized PLS factors were 10, 13, 11 and 8, 
respectively.  
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Figure 4. Linear regression between reference SOM values and predicted SOM values using NIR-PAS and reflectance NIRS based on 
PLSR modeling and leave-one-out cross-validation (n = 50). For NIR-PAS, the optimized PLS factors were 10, 12, 11 and 6 for SOM, clay, 
carbonate and Olsen P, respectively, while for reflectance NIRS, the optimized PLS factors were 10, 13, 11 and 8, respectively.
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derivatives and so on) and treatment (calibration, validation 
and prediction), so that a more reliable, general and robust 
prediction model can be established for a practical application.

Conclusions
An experimental set-up for PAS consisting of a PA accessory, 
tungsten bromine lamp, monochromator, chopper and lock-
in-amplifier was successfully established. The PA signal was 
obtained, and the chopping frequency was optimised as 20 Hz 
using the model in the total spectral range of 800–2400 nm 
performed well. The predictions were excellent for SOM, 
acceptable for carbonate and Olsen P but relatively poor for 
clay. The primary advantage of the PAS approach, compared 
with conventional chemical methods, is the unique ability to 
directly predict SOM content as well as some other soil prop-
erties without soil sample pretreatment. This technique may 
provide an alternative option for rapid soil analysis.
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