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Abstract Denitrification and its products composition were
evaluated in four typical Chinese paddy soils with pH (H2O)
ranging from 4.80 to 8.29 after application of 50 or
100 mg kg−1 soil K15NO3 and subsequent anaerobic incuba-
tion. Denitrification rates, which were indicated by nitric
oxide (NO), nitrous oxide (N2O), and dinitrogen gas (N2)
production, significantly varied among different paddy soils.
The denitrification rates of the neutral and alkaline paddy soils
were 2.6 to 16.6 times higher, respectively, than those of
acidic paddies. Furthermore, denitrification in paddy soils
could produce end products other than N2, and the product
composition depended on the paddy soil type. The percentage
of total N gases (NO+N2O+N2) present as N2O was nega-
tively and linearly correlated with denitrification rate
(P<0.05). Soil pH and C/N showed positive effects on deni-
trification rate (r=0.800 and r=0.781, respectively, P<0.05
for both), but negative effects on the percentage of total N
gases present as N2O (r=−0.976, P<0.01 and r=−0.781,
P<0.05, respectively). Denitrification rate and the percentage
of total gases present as N2O increased as the nitrate (NO3

−)
concentration increased. However, there was no effect of
NO3

− concentration on the percentage of total N gases present
as NO. Our results indicate that the potential N loss through
denitrification may be higher in alkaline paddies than that in
neutral and acidic paddies. Moreover, the variation of the N2O

percentage in denitrification products of different paddy soils
should be considered when estimating the denitrification-
derived N2O emission and when calculating the N budget in
paddy soils.
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Introduction

Reactive nitrogen (Nr) levels have increased dramatically
worldwide due to anthropogenic activities, particularly N-
fertilizer production and use as well as fossil fuel combustion
(Galloway et al. 2004). As a consequence, environmental Nr
is accumulating at local, regional, and global levels and the
excess of Nr can have negative impacts on the environment,
such as the greenhouse effect, destruction of the ozone layer,
acid rain, nitrate pollution in groundwater, eutrophication of
lakes, and offshore water (Vitousek et al. 1997).

Denitrification is the reduction of NO3
− through the inter-

mediates nitrite (NO2
−), nitric oxide (NO), and nitrous oxide

(N2O) to form dinitrogen gas (N2). It is the only pathway by
which Nr in terrestrial and aquatic ecosystems are transformed
back into inert N2 gas (Galloway et al. 2004), but denitrifica-
tion in soil can increase N2O and NO concentrations in the
atmosphere.

The denitrification activity depends on the oxygen partial
pressure, pH, NO3

− concentration, temperature, availability of
electron donors, and the quality and quantity of organic ma-
terials (Šimek et al. 2000; D'Haene et al. 2003; Amha and
Bohne 2011; Rahman et al. 2014). Losses resulting from the
complete reduction of NO3

− to N2 are rarely measured directly
in the field; the large atmospheric N2 background makes
detecting slight increases in N2 caused by denitrification ana-
lytically difficult (Davidson and Seitzinger 2006). Although
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N2O is generally regarded as an intermediate of the denitrifi-
cation pathway to N2, it can also be a denitrification end
product by denitrifying bacteria that lack nitrous oxide reduc-
tase (Papen et al. 1989), further complicating the accurate
estimation of the denitrification rate. Therefore, knowledge
of the soil denitrification and its product composition are
essential in determining the soil N budget.

China is one of the major rice growers in the world with
approximately 20 % of the world’s total area dedicated to rice
production (Frolking et al. 2002). The current average N-use
efficiency of rice cultivation systems in China (% recovery of
applied N in plants) ranges from 30% to 40 % (Zhu and Chen
2002). A major reason for low N-use efficiency in rice paddy
fields is the loss of gaseous N through denitrification (Xing
and Zhu 2000; Zhu and Chen 2002; Li and Lang 2014).

Numerous studies have investigated denitrification rate in
paddy soils, but mostly by the measurement of the amount of
NO3

− lost (Aulakh et al. 2001; Xing et al. 2002; Zhu et al.
2003; Wang et al. 2011; Ma et al. 2013), detailed knowledge
of the total gaseous (NO+N2O+N2) losses of N via denitrifi-
cation in rice paddy soils remains inadequate, and the mech-
anisms underlying N2O and NO emissions in paddy soil
through denitrification remain unclear. As reported by Zhang
et al. (2009), the amount of total N gases produced is a better
measure of denitrification rate than the amount of NO3

− lost
because NO3

− may be consumed through immobilization or
the dissimilatory reduction of NO3

− to NH4
+ (DNRA).

Furthermore, the denitrification rate in flooded soils is not
controlled by the activity of denitrification enzymes but rather
by the rate of NO3

− production through nitrification process
(Zhou et al. 2012), which occurs in aerobic micro zone such as
the rhizosphere and the interface between standing water and
the soil (Nicolaisen et al. 2004). In other words, denitrification
rate is substrate depended. Nevertheless, it is not clear whether
NO3

− concentration would affect denitrification rate and its
product composition.

The measurement of denitrification rates in situ is problem-
atic due to the presence of heterogeneous communities of
denitrifers and the physical and chemical complexity of soils
(Betlach and Tiedje 1981), thus, elucidating denitrification and
its product compositions in paddy soils through laboratory
culture is vital to deducing the actual soil N loss through
denitrification under field conditions. Therefore, in this study,
we first reported the use of total N gases (NO+N2O+N2)
production as an indicator of denitrificaton rate of paddy soils,
and the effect of NO3

− concentration on denitrification rate and
its product composition was also investigated by a 15N labeling
anaerobic incubation experiment under laboratory conditions.
Four typical Chinese paddy soils that differed in pH, clay
content, and C/N ratio were chosen, and two NO3

− concentra-
tions (50 and 100mgN kg−1 soil), whichwere within the range
of observed NO3

− concentrations in paddy soils after fertiliza-
tion (Cai and Mosier 2000; Cai 2002), were adopted.

Materials and methods

Site description and soil sampling

Two paddy soils were collected from Yixing (31°17′N,
119°54′E) and Huai’an (33°43′N, 118°86′E), situated in
the North and South Jiangsu provinces, respectively, and
two from the Ecological Experiment Station of Red
Soil, the Chinese Academy of Sciences, Yingtan
(28°15′N, 116°55′E), Jiangxi Province. The four paddy
soils were developed from different parent materials.
The Yixing soil was developed from alluvial deposits
and classified as Hydragric Anthrosol (Hy). The
Huai’an soil was developed from lacustrine sediment
and classified as Anthraquic Cambisol (An). One of
the soil samples from Yingtan was derived from red sand-
stone and classified as Haplic Acrisol (Ha), whereas the other
was derived from quaternary red clay and classified as
Ferralsol (Fe) according to the World Reference Base
for Soil Resources system (IUSS Working Group WRB
2007). Fifteen soil cores from each site were pooled,
sieved (<2 mm), and immediately stored at 4 °C until
analysis. The key properties of the soils are shown in
Table 1.

Anaerobic incubation and sampling

Denitrification rate was determined using the anaerobic incu-
bation method of Xu and Cai (2007) and slightly modified by
Zhang et al. (2009). In brief, for each paddy soil sample, a set
of 250 mL each Erlenmeyer flask contained 40 g (oven-dried
equivalent) of fresh soil and 40 mL of deionized water. The
flasks for each soil were then divided into two groups for two
levels of NO3

− concentration treatments; 2 mL of a K15NO3

(20 % 15N atom % excess) solution containing 2.0 mg of
NO3

− (equivalent to 50mg of NO3
− kg−1 soil (N50)) or 4.0 mg

of NO3
− (equivalent to 100 mg of NO3

− kg−1 soil (N100))
were uniformly added to each flask for groups 1 and 2,
respectively, using a 2.5-mL syringe (no carbon addition).
The flasks were immediately capped with airtight silicone
rubber stopper fitted with butyl rubber septa. A silicone seal-
ant was placed around the stoppers to ensure strictly airtight
conditions. The flasks were connected to a multiport vacuum
manifold to be vacuumed simultaneously and flushed
with highly purified N2 gas. Such procedure was repeat-
ed three times (each for 12 min) to create anaerobic
conditions (Zhang et al. 2009). After equilibration at
atmospheric pressure, the flasks were incubated in the
dark at 25±1 °C. At 3, 6, 12, 24, 48, 96, 168, and
264 h after the addition of 15NO3

− solution, three flasks
from each soil and nitrate treatment were randomly
selected, and the headspace gases were sampled to
determine the N2O and NO concentrations and N2O
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and N2 isotopic compositions using a 25-mL syringe.
Immediately after gas sampling, soil in the flask was
extracted with 160 mL 2.5 M KCl solution. The mixture (solu-
tion plus soil) was shaken at 25 °C for 1 h and filtered through a
qualitative filter paper. The filtrates were then stored at
4 °C prior being analyzed for mineral N (NO3

− and
NH4

+) concentrations and the relative 15N abundance. In
order to determine the concentration and isotopic com-
position of insoluble organic N, the KCl-extracted soil
was washed with distilled water to remove residual
mineral N and subsequently oven-dried at 55 °C.

Analyses

The N2O concentrations of samples were determined using an
Agilent 7890 gas chromatograph (Agilent, USA). The NO
concentrations in the samples were measured using an NOx

analyzer (Model 42i, Thermo Environmental Instruments Inc,
Franklin, MA, USA). A segmented flow analyzer (Skalar
SAN++, Netherlands) was used to determine the concentra-
tions of NH4

+ and NO3
− in soil extracts. The N2O and N2

isotopic compositions were determined using a FinniganMAT
253 isotopic ratio mass spectrometer. A method based on N2O
production from hydroxylamine intermediates, after re-
duction with Cd/Cu, was used to determine 15N enrich-
ment of NO3

− in KCl extracts (Stevens and Laughlin
1994), as described in detail by Lan et al. (2013). The
15N enrichment of NH4

+ in the KCl extracts was deter-
mined by distillation with MgO, and by isotopic mass
spectrometry (Finnigan MAT 251) after converting
NH4

+ in soil to molecular N2 using NaBrO. The con-
centration and 15N composition of insoluble organic N
remaining in the soil after KCl extraction were deter-
mined by isotopic mass spectrometry (Finnigan MAT
251) after converting NH4

+ in soil to molecular N2 by
Kjeldahl digestion with NaBrO (Zhang et al. 2009).

Calculations and statistical analyses

N2 production

The total amount of N2 evolved in the Erlenmeyer flask was
calculated as described by Zhang et al. (2009), by considering

the flask headspace volume, N2 density, and dissolved N2 in
the soil solution, as follows:

C ¼ 1:15� Vg

� �þ 1:15� V 1 � αð Þ� �� 106=W ð1Þ

whereC is the total amount of N2 (mg kg−1 soil), 1.15 is the
density of N2 at standard pressure and 25 °C (kg m−3), Vg is
the headspace volume (m3), Vl is the water volume (m3), α is
the Bunsen correction coefficient (0.0143 at 25 °C), and W is
the soil weight (kg). The change in air pressure in the flasks
was insignificant during incubation and was ignored in the
calculation of N2 production.

The amount of 15N2 and
14N2 produced from denitrification

during the anaerobic incubation period was calculated based
on the total amount of N2 in the flask calculated by Eq. (1), the
measured atom % excess of 15N in N2, and by assuming that
the isotopic composition of the produced N2 was the same as
that of the reduced soil NO3

− (Zhang et al. 2009). To verify
whether the atom % excess 15N in NO3

− could calculate N2

gas production through denitrification, the temporal variation
in the average atom% excess 15N in NO3

−was evaluated. The
preliminary results showed that the atom % excess 15N in
NO3

− slightly decreased in all soils and NO3
− treatments

during incubation (Fig. 1). The lowest atom % excess 15N in
NO3

− was observed in An soil, whereas the highest was
obtained in Fe soil. The temporal variations in the atom %
excess 15N in NO3

− ranged from 1.52 % to 3.98 %, with the
highest in the An-N50 treatment and the lowest in the Hy-
N100 treatment. These results indicate the suitability of this
approach.

Denitrification rate, percentage of total evolved N gases
(NO+N2O+N2) present as N2O or NO, and recovery
of added NO3

−-15N

The denitrification rate was expressed as the total N gases
(NO+N2O+N2) production per hour during incubation. We
also calculate the percentage of total N gases present as N2O
or NO. The recovery of added 15NO3

− after the anaerobic
incubation was calculated using Eq. (2). 15N enrichment in
NO and dissolved organic N of KCl extracts were not consid-
ered because not determined.

Table 1 Some properties of the studied soils

Soil Abbreviation Total N ( g·kg−1) Total C C/N pH Clay (<2 μm; %) Silt (2 μm to 60 μm) Sand (60 μm to 2,000 μm)

Hydragric anthrosol Hy 1.35b1 14.9a 11.0a 6.20b 16.4b 82.9a 0.7c

Anthraquic cambisol An 1.46ab 14.3a 9.79a 8.29a 44.8a 53.5b 1.8c

Haplic acrisol Ha 1.61a 11.5b 7.03b 4.91c 15.6b 63.6b 20.8b

Ferralsol Fe 1.19b 8.37c 7.14b 4.80c 35.8a 32.2c 33.0a

1 The different letters in the columns indicate significant differences between soils at P<0.05
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Recovery of 15N %ð Þ

¼ ð15NH4
þþ15NO3

−þ15N 2Oþ15N 2 þ insoluble organic15NÞ
added15NO−

3

� 100%

ð2Þ

Statistical analyses

The differences in the soil properties, denitrification rates, and
percentage of total evolved N gases present as NO or N2O of
the different treatments were evaluated by ANOVA and com-
pared by the Tukey’s test at P<0.05, using SPSS software
package 18.0 for Windows. Spearman’s rank correlation co-
efficient analysis was used to determine the edaphic variables
correlated with denitrification rate, and the percentage of total
N gases present as NO or N2O using the SPSS software
package 18.0 for Windows.

Results

NO3
− dynamics during incubation

Under anaerobic conditions, the added NO3
− was continuous-

ly consumedwith increasing incubation time in all tested soils,
except the Ha soil in which maintained a high NO3

− concen-
tration during the incubation (Fig. 2a, b). The NO3

− level was
negligible in the Fe soil when it was treated with 50mgN kg−1

NO3
− after 168 h, and in the Hy and An soils after 264 h

(Fig . 2a) . By contras t , la rge amounts of NO3
−

(>20 mg N kg−1) remained in all soils at the end of the
incubation when treated with 100 mg of NO3

− (Fig. 2b).
However, when treated with both 50 and 100 mg of NO3

−,
the amount of consumed NO3

− varied significantly among the
different soils after 264 h, soils could be ranked An>Hy>Fe>
Ha (Fig. 2b).

Nitrogen gas production patterns and denitrification rate

The dynamics of N gases production in different soils signif-
icantly varied. Both NO and N2O concentrations were detect-
ed in Hy and An soils 3 h after the start of incubation
regardless of the added NO3

− concentration (Fig. 3a–d); NO
and N2O production in Ha and Fe soils were detected only
after 12 and 24 h, respectively (Fig. 3a–d). The N2O concen-
trations remained at high levels in the two acidic paddy soils
(Ha and Fe), whereas the NO concentrations were at consid-
erably lower levels (Fig. 3a–d). The NO production generally
peaked earlier than that of N2O regardless of the NO3

− treat-
ment (Fig. 3a–d), and NO was no longer detected in Hy and
An soils after 96 h (Fig. 3a, b). Nitrous oxide remained
detectable in all treatments at the end of incubation except in
the An-N50 treatment, where it was undetectable after 168 h
(Fig.3c, d). 15N-labeled N2 was not detected in Hy and An
soils treated with both NO3

− concentrations until after 6 h, and
it was until 168 h in the two acidic paddy soils (Ha and Fe;
Fig. 3e, f). Dinitrogen gas production in all soils and NO3

−

treatments continuously increased as the incubation proceeded
(Fig. 3e, f). However, at the end of the incubation, the total N
gases (NO+N2O+N2) that accumulated in the headspace
significantly varied among soils and nitrate treatments
(P<0.05; Fig. 3g, h). The accumulated total N gases in the
N100 treatment were approximately 1.2 to 1.4 times higher
than those of the corresponding N50 treatment. The calculated
denitrification rates significantly varied among the treatments
after 264 h of incubation, ranging from 0.014 mg N kg−1 h−1

in the Ha-N50 treatment to 0.273 mg N kg−1 h−1 in the An-
N100 treatment (Table 2). The denitrification rates of the
neutral and alkaline paddy soils were 2.6 to 16.6 times higher,
respectively, than those of acidic paddies (Table 2).

Recovery of added 15NO3
−

Labeled 15Nwas not fully recovered as NO3
−, NH4

+, N2O, N2,
and insoluble organic N. The 15NO3

− recovery rate in all soils
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was approximately 90 % 3 h after NO3
− addition to soil. This

value gradually decreased to 56 % to 69 % in the N50
treatment and to 61 % to 78 % in the N100 treatment at the
end of the incubation. Moreover, 15N was detected in NH4

+

(particularly in Fe soil; Fig. 2c, d) and soil organic matter (data
not shown) after incubation.

Percentage of the total evolved N gases (NO+N2O+N2)
presented as NO and N2O

The percentage of total N gases present as NO was negligible
(<1 %) in the two acidic paddy soils during the entire 264 h of
incubation and it was significantly higher in Hy and An soils
(Fig. 4a, b), where it decreased as the incubation proceeded
and became undetectable after 96 h. The percentage of total N
gases present as NO was higher in Hy soil than that in An soil
(Fig. 4a, b). However, there was no difference in the percent-
age of total N gases present as NO when the N50 and N100
treatments were compared (Table 2).

The percentage of total N gases present as N2O was gen-
erally higher than the percentage of total N gases present as
NO during the all incubation in all treatments, particularly in
the two acidic paddy soils (Fig. 4). The percentage of total N
gases present as N2O increased between 3 and 12 h in Hy and
An soils and between 3 and 96 h in Ha and Fe soils but
subsequently decreased in all soils and NO3

− treatments
(Figs. 4c, d). The acidic paddy soils (Ha and Fe) maintained
higher percentage of total N gases present as N2O than the
neutral (Hy) and alkaline (An) paddy soils. The average

percentage of total N gases present as N2O in Hy and An soils
were significantly lower than those in the acidic paddy soils,
in which the percentages exceeded 60 % (Table 2).
Furthermore, the addition of NO3

− to soil increased the per-
centage of total N gases present as N2O in all tested paddy
soils (Table 2).

Discussion

The four paddy soils developed from different parent materials
significantly differed in NO3

− consumption, which ranged
from negligible to complete disappearance of NO3

− at the
end of incubation at 25 °C when NO3

− was added at a rate of
50 mgN kg−1 soil (Fig. 2). The obtained denitrification rates of
Hy and An soils collected from Jiangsu Province were higher
than those of Ha and Fe soils collected from Jiangxi Province
when the N50 treatments were compared (Table 2). This
confirms the reported positive correlation between denitrifica-
tion rate and latitude in the forest soils of eastern China by
Zhang et al. (2009). However, the denitrification rates of the
four paddy soils (from 0.014 mg N kg−1 h−1 to
0.273 mg N kg−1 h−1) were generally higher than those of
forest soils (from 0.011mgN kg−1 h−1 to 0.127mgN kg−1 h−1)
collected from different climatic zones of China and measured
using the same method (Zhang et al. 2009). Similar results
were reported by Xu and Cai (2007), who found that rice
cultivation significantly increases denitrification rate (based

Fig. 2 Changes in the NH4
+-N

and NO3
−-N concentrations in

paddy soils during anaerobic
incubation. (a and c,
50 mg N kg−1 labeled NO3

−

treatment; b and d, 100mgN kg−1

labeled NO3
− treatment; Hy,

Hydragric Anthrosol; An,
Anthraquic Cambisol; Ha, Haplic
Acrisol; and Fe, Ferralsol. Data
are the mean of three replicates.
Bars represent standard
deviations)

Biol Fertil Soils (2015) 51:89–98 93



on NO3
− concentration measurements) compared with four

other land uses (tea garden land, forestland, brush land, and
upland). According to Xu and Cai (2007), this phenomenon is
most probably due to increases in the organic C and total N
contents in the soil, which promote the population growth and
activities of microbial under anaerobic conditions of flooded
rice fields.

Parent materials generally affect soil formation processes
and lead to differences in soil physicochemical properties,
which subsequently affect N transformations (Miller and
Donahue 1990). Denitrification rate was reported to be corre-
lated with the amount of easily-decomposable soil organic C,
as well as soil pH and C/N (D'Haene et al. 2003; Amha and

Bohne 2011). In this study, the four paddy soils developed
from different parent materials exhibited different properties
such as pH, clay content, and C/N ratio. Spearman’s correla-
tion coefficients indicate that the denitrification rates of four
Chinese paddy soils were significantly correlated with soil pH
(r=0.800, P<0.05) and C/N ratio (r=0.781, P<0.05). Thus,
soil pH and C/Nmay be important regulators of denitrification
in paddy soils. The slightly alkaline paddy soil (An) had
higher denitrification rate than the neutral (Hy) and acidic
(Ha and Fe) paddy soils, which confirming that the optimum
pH for denitrifiers is between 7.0 and 8.0 as reported byWijler
and Delwiche (1954) and Davidson et al. (1985). However,
Xu and Cai (2007) and Zhang et al. (2009) were unable to
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establish any relationship between pH and denitrification rate.
Denitrification is an electron-consuming and heterotrophic
process (Ahn 2006), in which the available C provides elec-
trons for NO3

− reduction, thereby promoting denitrification
(Heinen 2006). This phenomenon may explain the positive
relationship between denitrification rate and the C/N ratio.
Therefore, low denitrification rates in Ha and Fe soils may
due to the small amount of easily-decomposable soil organic
C, which worth further investigation.

The denitrification rates of the four tested paddy soils
increased as the NO3

− concentration increased. The added

NO3
− possibly affected denitrification through two different

ways: (a) by directly regulating the availability of the denitri-
fication substrate and (b) by indirectly affecting denitrifying
microbes (Drury et al. 1991; Amha and Bohne 2011). The
NO3

− supply in flooded paddy soils is primarily derived from
the nitrification of added ammonia or urea fertilizers.
Evidence showed that the nitrification rate increases with
increasing pH (from 6.0 to 8.5), with the optimum pH at
approximately 8.5 (Sahrawat 1982, 2008). Thus, the
denitrification-induced loss of the NO3

− produced through
the higher nitrification rates of alkaline paddy soils would

Table 2 Average denitrification rate and percentage of total N gases (NO+N2O+NO) present as NO and N2O during anaerobic incubation at 25 °C

Nitrate treatment1

(mg N kg−1)
Soil2 Denitrification rate (mg N kg−1 h−1) NO percentage (%)3 N2O percentage (%)

N50 Hy 0.146±0.012b 2.12±0.53a 15.2±1.91b

An 0.233±0.009a 0.66±0.17b 1.86±0.21c

Ha 0.014±0.009d 0.44±0.12b 67.6±4.86a

Fe 0.056±0.016c 0.05±0.01c 59.2±4.54a

N100 Hy 0.185±0.011b 2.35±0.22a 22.6±1.09b

An 0.273±0.031a 0.82±0.14b 2.46±0.35c

Ha 0.020±0.011d 0.17±0.03c 73.8±8.15a

Fe 0.081±0.021c 0.06±0.02c 64.5±4.49a

1N50, NO3
− -50 mg N kg−1 treatment; N100, NO3

− -100 mg N kg−1 treatment.
2Hy hydragric anthrosol, An anthraquic cambisol, Ha haplic acrisol, Fe ferralsol
3 Data the mean of three replicates±standard deviation. The different letters in the columns indicate significant differences among soils at P<0.05 for
each nitrate treatment

0 50 100 150 200 250

0

10

20

30

40

50

60

0 50 100 150 200 250
0

20

40

60

80

100

0 50 100 150 200 250

0

10

20

30

40

50

60

0 50 100 150 200 250
0

20

40

60

80

100

c

N
O

 p
er

ce
nt

ag
e 

(%
)

Hy An
Ha Fe

a

Incubation time (h)

N
2O

 p
er

ce
nt

ag
e 

 (%
)

N
2O

 p
er

ce
nt

ag
e 

(%
)

Incubation time (h)

b

N
O

 p
er

ce
nt

ag
e 

(%
)

d
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probably be higher than those in neutral and acidic paddy
soils. However, our results also show that when the added
NO3

− concentration was increased from 50 mg N kg−1 to
100 mg N kg−1, the denitrification rates in the paddy soils
exhibited only an approximately 1.2- to 1.4-fold increase,
which indicates that denitrification rate gradually increased
when the NO3

− concentration exceeded 50 mg N kg−1. This is
in agreement with many models that consider denitrification
to be a function of NO3

− concentration, as described by
Michaelis–Menten relationship (Heinen 2006).

The added of NO3
−-N was not recovered by summing up

the N gas products, NH4
+-N, and organic N at the end of

incubation. The amount of N gases produced is a more precise
measure of the denitrification rate than the amount of NO3

−

consumed, as also reported by Zhang et al. (2009) and Yu et al.
(2014). The greater increase in the NH4

+ concentration was
observed in Fe soil (Fig. 2c, d). Ammonium production
through the dissimilatory reduction of NO3

− to NH4
+

(DNRA) has been observed in rice paddy soils (reaching
21 % of NO3

− consumption; Chen et al. 1995a, 1995b; Yin
et al. 2002). There is evidence that many soil bacteria and
fungi have the ability to perform DNRA. Redox status and
ratio of C/NO3

− have been identified as the most important
factors regulating DNRA in soil (Rutting et al. 2011).
However, factors affecting DNRA in paddy soils are still
poorly known.

The denitrification of these paddy soils produce end prod-
ucts other than N2, and product composition depended on the
paddy soil type (Table 2). The percentage of total N gases
present as NO were smaller than those percentage of total N
gases present as N2O regardless of the soil and NO3

− treat-
ment (Fig. 4). The acidic paddy soils showed a significantly
smaller NO than N2O percentage than the alkaline and neutral
paddy soils (Table 2). This result probably lead to the absence
of a significant correlation between the NO and N2O percent-
ages (r=0.161, P>0.05). The percentage of total N gases
present as NO was correlated with total C content, but not
with soil pH and NO3

− concentration.
In the two acidic paddy soils (Ha and Fe), the percentage of

total N gases present as N2O was approximately 60 %
(Table 2); whereas in Hy and An paddy soils, it was below
25 % and N2 was the main product. The decreased N2O
production at the end of incubation was probably due to the
strong reducing conditions, which promoted the complete
reduction of NO3

− to N2. The percentage of total N gases
present as N2O was negatively and linearly correlated with
denitrification rate when the same amount of NO3

−was added
to soil (Fig. 5), which implies that the soil with lower denitri-
fication rate tends to have a higher N2O proportion in the
denitrification products.

The variations in composition of denitrification products of
the different paddy soils could be ascribed to their different
soil properties. The N gases produced during soil

denitrification are reportedly dependent on various edaphic
and environmental factors (Zhang et al. 2009; Senbayram
et al. 2012). In the present study, a negative Spearman’s
correlation was established between the percentage of total
N gases produced as N2O and soil pH (r=−0.976, P<0.01,
Table 3), which confirms previous laboratory and field stud-
ies, showing that the N2O/N2 ratio decreases when the soil pH
increases (Goodroad and Keeney 1984; Šimek and Cooper
2002; Liu et al. 2010). Moreover, the percentage of total N
gases present as N2O was also negatively correlated with soil
C/N ratio (r=−0.781, P<0.05, Table 3), probably because
higher available organic C substrates in soil promote the
complete reduction of low to moderate levels of NO3 to N2

gas, thus reducing the evolved N2O (Ullah et al. 2005). The
addition of NO3

− to soil increased the percentage of total N
gases present as N2O in all tested paddy soils (Table 2),
probably because NO3 reduction is more energy-efficient than
that of N2O (Ullah et al. 2005). Our results suggest that soils
that had lower denitrification rates had higher percentage of
total N gases present as N2O in their denitrification products at
the same NO3

− concentration, whereas increased NO3
−
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Table 3 Spearman’s correlation coefficients of denitrification rate and
percentage of total evolved N gases (NO+N2O+NO) present as NO and
N2O with soil properties

Variable Denitrification rate NO ratio N2O ratio

pH 0.800* 0.586 −0.976**
Clay 0.743 0.095 −0.743
TC 0.586 0.976** −0.586
C/N 0.781* 0.743 −0.781*

*P=0.05 and **P=0.01 levels (two-tailed), significant correlations
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concentration promoted denitrification and increased the per-
centage of N2O in the produced N gases.

Conclusions

Denitrification rate and its product compositions significantly
varied among the studied paddy soils. The potential N loss
through denitrification was higher in the alkaline paddy soils
than that in the neutral and acidic paddy soils, and the N loss
was also higher in soils with high C/N ratios. Denitrification in
paddy soils could produce end products other than N2, there-
fore, the variation of the N2O proportion in denitrification
products of different paddy soils should be considered when
estimating the denitrification-derived N2O emission and when
calculating the N budget in paddy soils. However, further
studies must be conducted to confirm our results regarding
the denitrification and associated N gas production mecha-
nisms in paddy soils. Future work should include an increased
number of soil types to establish more definitively the factors
affecting denitrification in the paddy soils of China.
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