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Abstract

Key message The Cohen method of measuring vessel-

length distributions is much more accurate than the DD

algorithm on integer values, which should be aban-

doned. More research is needed to get the real distri-

bution of vessel length.

Abstract Scientists have been measuring the vessel length

of plants for more than 50 years. The method involves

infusing stem or segments with a visible substance that

completely fills vessels cut open at the infusion surface.

The number of infused vessels is then quantified versus

distance from the infusion surface. A theoretical model is

then used to convert the counts of infused vessels to a

vessel length distribution. Over the years the methods and

theory have changed greatly. The purpose of this review is

to give the reader an understanding of why vessel length is

important and to provide a theoretical basis for selection of

the best method and theory to arrive at vessel length data.

Keywords Vessel length � Vessel length distribution �
Efficiency versus safety � Cohesion–tension theory

Vessel lengths are difficult to visualize in a microscope

because they are small enough in diameter to require a

microscope to see them (mostly 0.01–0.2 mm) but the

microscope is too myopic to see more than 0.1–1 mm of

their full length (10–104 mm). Their small diameter-to-

length ratio also makes it impossible to represent them in

scale drawings. Plant scientists have been interested in

vessel length for more than 60 years. Greenidge (1952)

talked about maximum vessel length and Scholander

(1958) talked about ‘average’ vessel length. But the con-

cept of vessel-length distribution originated with Skene and

Balodis (1968). After 1968 over 150 papers have reported

measurements of vessel length and over 800 refer to values

of vessel length. In studies before 2000 most papers report

vessel length distributions from the perspective of scientific

curiosity. However, there is now a more fundamental rea-

son for wanting this information. Vessel length is needed to

evaluate the trade-off between hydraulic efficiency of

vessels versus safety against cavitation. Vessel length is

tied to the unique and daring means by which land plants

transport water from the soil to the leaves.

Evolution of vascularization in plants

The evolution of vascularization in plants was driven by the

same physical constraints as in animals; vascularization is

needed for the rapid movement of water and nutrients over

long distances because diffusion is too slow to sustain life in

large organisms without a pathway for mass flow. However,

there are two fundamental differences between plant and

animal vessels: (1) the lumina in animal vessels are sur-

rounded by a wall comprised of living cells whereas the lumen

of a plant vessel is the dead remains of an individual cell with

only the cellulose cell wall remaining after death. (2) Fluid

transport in animal vessels is under positive pressure whereas

in plants fluid is transported under negative pressure and hence

fluid is transported in a metastable state (see below).

Primitive vascular land plants transport water in trac-

heids. In conifers, tracheids divide from cambial cells

located between the bark and wood of stems. Overlapping
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files of cells divide and enlarge to quite long cylindrical

cells 10–50 lm in diameter (D) and 1,000–7,000 lm in

length (L), (Fig. 1e, f, g). To become functional these cells

must die, but before they die they differentiate elaborate

connections between overlapping cells called bordered pits

(Fig. 2). Water flowing through a tracheid lumen encoun-

ters a hydraulic resistance to water flow that approximately

equals the hydraulic resistance of the pits. Lancashire and

Ennos (2002) proposed a theory that the optimum wood

conductance occurs when the tracheid length increases as a

defined function of diameter because lumen resistance

changes proportional to L/D4 Whereas pit resistance

changes proportional to the lumen surface area aLD where

a = p 9 (fraction of surface occupied by pits).

Vessels are composed of linear files of vessel elements.

Each element starts as a living cell and dies to become

functional. Prior to death the end walls of vessel elements in

series partly or fully disappear to form perforation plates

between the many vessel elements to make one long vessel.

Tracheids are thought to have evolved into vessel elements by

becoming larger in diameter (up to 400 lm) but shorter than

tracheids (Fig. 1h, i, j, k); however, vessels can consist of

hundreds to thousands of vessel elements resulting in vessel

lengths anywhere from 0.001 to [10 m long. Conifer trac-

heids also evolved into shorter and smaller diameter cells

(called wood fibers) that pack around vessels to increase the

mechanical strength of angiosperm wood (Fig. 1a, b, c, d).

Like tracheids, individual vessels are interconnected with

other vessels when they occur in vessel clusters. Usually

vessels are solitary in wood surrounded by smaller living or

dead cells, but tend to wander around within the wood volume

to make occasional contact with other vessels (Fig. 3) as they

follow the main axis of stems. Water passes from vessel to

vessel through pit fields where adjacent vessels adjoin

(Fig. 3). Alternatively, if solitary vessels are surrounded by

fiber tracheids, then water can flow between vessels via fiber

bridges (Cai et al. 2014). Tyree and Zimmermann (2002) have

suggested that in rattan vines, where very long vessels ([5 m)

are surrounded by living parenchyma cells, water can pass

efficiently via parenchyma cell membranes.

Tracheids are easily measured by a maceration of wood in

strong acid, which causes the tracheids to dissociate into

individual cells allowing easy measurement of L and D. In

contrast, maceration of angiosperm wood dissociates vessels

into individual vessel elements and hence more elaborate

techniques need to be devised to estimate the length of vessels.

Why vessel length matters: metastable water

and the presumed trade-off

Vessel-lumen hydraulic resistance is approximately equal

to the vessel-to-vessel resistance even in species with quite

long vessels. Hence average vessel length increases with

vessel diameter to maintain the partitioning of hydraulic

resistance between lumina and end walls (Hacke et al.

2006). The Hagen-Poiseulle Law predicts that the stem-

hydraulic-conductance should increase with the square of

vessel diameter (see Chapter 1 in Tyree and Zimmermann

2002) when conduits are packed into tight geometric

arrays. So why don’t plants have only large diameter ves-

sels that run their entire length, from roots to leaves? Large

vessels would be very efficient for transporting water

because there would be little pressure drop along the root/

stem pathway, which in turn would make the water

potential of leaves nearly that of soils. Photosynthesis rate

increases with stem hydraulic conductance (Hubbard et al.

2001); hence large vessels would promote carbon gain, but

large vessels are also more prone to cavitation (Cai and

Tyree 2010) which reduces hydraulic conductance and

decouples leaves from soil water reserves. That is the basis

of the presumed trade-off.

The reason plants tend to have shorter-than-possible

vessels with smaller-than-optimum diameters has a lot to

do with the daring means by which plants transport water.

The cohesion–tension theory says that plants transport

metastable water, i.e., water under negative pressure = less

than atmospheric pressure. The cohesion–tension theory

has been validated indirectly by many measurements (Ty-

ree 1997) as well as by the direct measurement of negative

pressure in maize and woody vines (Wei et al. 1999).

cohesion–tension theory explains why stems have complex

networks of tracheids or vessels. The cohesion–tension

theory also explains why vessels are connected to each

other via pit membranes. These elaborate structures are

needed to transport water in plants safely.

How does vessel structure work to allow for the daring

transport of metastable water? A vessel interconnected

with adjacent vessels allows for redundancy in the pathway

of water movement and protects plants against the frequent

instances in which metastable water breaks down by cav-

itation. When tension (negative pressure) becomes too

large, an air-bubble is rapidly sucked into a water-filled

vessel or tracheid (cavitation), rapidly expands to fill the

entire vessel with a partial vacuum, and then air comes out

of solution in surrounding tissue to form an air bubble (an

embolism) at atmospheric pressure. An embolized vessel is

incapable of transporting water and typically remains em-

bolized for many hours or forever if the plant has no

mechanism to refill embolized vessels. The pit-membranes

between adjacent vessels usually function to prevent the

propagation of air from an embolized vessel to an adjacent

vessel filled with metastable water. The surface tension of

water prevents the air/water interface from passing through

the pit membrane provided the pressure difference between

the air-filled and water-filled sides of the membrane is not
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Fig. 1 Tracheids in conifer

wood evolved in two directions

to become vessel elements and

fibers in angiosperm wood. As

illustrated, vessel elements tend

to be larger in diameter than

tracheids and are terminated by

perforation plates that can be

simple (K: a large hole) to

scalariform (H: elongated holes

separated by cellulose bands).

Wood fibers are small linear

cells packed around vessels and

provide mechanical strength to

angiosperm wood. Reproduced

from (Bailey and Tupper 1918)
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too large. The pressure difference that can be sustained is

approximately equal to DP = Pair - Pwater = -2s/r,

where s = the surface tension of water and r = the radius

of the pore in the pit membrane. Based on the DP that

induces embolism we suspect the pit membrane pores are

10–100 nm in diameter. The pit membrane with the largest

pore in any given vessel lumen is thought to determine the

tension at which it is likely to cavitate given the presence

of an embolism in an adjacent vessel (see the air-seeding

hypothesis in Sperry and Tyree 1988; Cochard et al. 1992).

Readers interested in learning more are directed to the

outstanding review on the theory of optimal vessel length

published by Comstock and Sperry (2000).

In conclusion, water transport is divided between mil-

lions of independent vessels connected to each other in

redundant pathways. Redundancy of pathways allows large

numbers of vessels to cavitate without reducing transport

efficiency enough to negatively impact tree performance.

A brief history of methods

There are two accurate ways to obtain information on

vessel length distribution but one is very labor-intensive

(the cinematographic technique, Zimmermann 1971, 1978)

and the other requires very expensive equipment (high-

resolution computer-aided X-ray tomography, Brodersen

et al. 2011). Hence the preferred approach is to (1) visu-

alize the length of cut-open vessels by injecting vessels at

the cut surface with some easily observed substance (col-

ored or florescent) and (2) use a computational algorithm to

deduce vessel length distributions based on a few

assumptions.

Perfusion

The trick is to perfuse the vessels with a colored substance

that will pass through the vessel lumina and perforation

plates without plugging but not pass through pit mem-

branes. Vessel lengths can be measured in any plant organ

but we will refer generally to ‘stems’ with the under-

standing that stem can also mean root or petiole too. Once a

stem has been perfused with a colored substance it has to

be stabilized in place and then the stem has to be sectioned

into pieces of known length to observe how far the sub-

stance has traveled before reaching the vessel end.

The substance of choice used to visualize cut-open ves-

sels has changed with time. Skene amd Balodis (1968) used

oil-based paint. The paint pigment made the oil visible.

When oil is injected (infused) into hydrated stems through a

cut surface, the oil displaces water and the oil travels only as

far as the end of the vessel because the surface tension of the

oil/water interface prevents it from passing through pit

membranes, provided the perfusion pressure is low enough.

Fig. 2 Shown is a

diagrammatic representation of

tracheids in conifer wood.

R = living ray cells,

T = tracheid lumen, P = pits,

arrows indicate the direction of

water flow through and between

tracheids. Reproduced from

Tyree and Zimmermann (2002)
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Vessels perfused with colorant must have no previous

embolisms, because air bubbles cannot pass through pit

membranes at the normal perfusion pressure. Hence, if a

colorant is injected in front of a bubble, the colored liquid

will compress the air bubble and travel only part way down

the vessel until the pressure of the colored fluid equals the

pressure of the compressed bubble. It is advisable to flush

stems with degassed, clean water to remove embolisms

before injecting colored solutions.

The colorant has to be composed of particles small

enough to pass through perforation plates but too large to

pass through pit membranes (the ideal particle size is

probably between 0.1 and 1 lm). Later, oil-paint was

replaced with water-based latex-paint diluted 100:1 or

more in water; others have used the mineralized pigment

particles used in latex-paint. Although many researchers

have perfused stems with dilute latex-paint it is not

advisable to use latex at all. Latex has little or no color and

consists of amorphous particles that are sticky and tend to

aggregate around the pigment particles and sticks to sur-

faces. That is why latex paint sticks so well to walls. It is

far better to use the paint pigments without latex.

Fig. 3 a A schematic

representation of how vessel-

elements are arranged in single

file to form vessels. Sometimes

vessels are solitary and other

times they are adjacent.

X indicates a small patch of wall

where vessels adjoin. This area,

which contains pits, is enlarged

to the right and shown in cross

section and face-on views.

Reproduced from Zimmermann

and McDonough 1978. b Actual

arrangement of vessels in the

wood of Cedrela fissilis. This

scale drawing was constructed

from detailed analysis of

hundreds of serial section of the

wood. Note that the vertical

dimension is compressed about

10 times versus the other two

dimensions. Numbers indicate

vessel numbers. Reproduced

from Zimmermann and Brown

1971
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The mineralized pigments are fine enough to remain in

suspension in water for long periods of time. Even though

the colorant particles might be small, the particles tend to

cluster into larger globules that will not pass through per-

foration plates. Premature plugging of vessels with parti-

cles before they have reached the vessel ends presents

problems with subsequent analysis of data, i.e., causing an

exclusion of the smaller diameter vessels (Ewers and

Fisher 1989) or underestimating the length of long vessels.

Consequently, the current technique is to inject vessels

with silicone rubber recently mixed, but not yet polymer-

ized (Andre 1998; Sperry et al. 2005).

Silicone rubber mixtures have been used extensively to

visualize the nano-structures on the inner surface of vessels

and are capable of moving the entire length of vessels if not

impeded by air bubbles trapped in the vessels. Stem seg-

ments can be injected with silicone rubber using the tech-

nique described in Sperry et al. (2005) and Wheeler et al.

(2005). Briefly, silicone rubber is freshly mixed from liquid

silicone and hardener in the ratio of 10:1 (10 g RTV141

part A plus 1 g RTV141 part B) (Rhodorsil RTV-141;

Rhodia USA, Cranbury, NJ, USA; imported by Walco

Materials, Escondido, CA, USA). Uvitex, a fluorescent

whitening agent (Ciba Uvitex OB; Ciba Specialty Chemi-

cals, Tarrytown, NY, USA), is added to make the silicone

visible under UV light. The Uvitex is dissolved in chlo-

roform (1 % w/w) and 0.5 ml added to the silicone mix

(Hacke et al. 2007). Uvitex does not move beyond the

silicone rubber into wet wood because it is not water sol-

uble. Stem segments are first flushed with a salt solution

filtered to 0.2 lm at 0.05–0.15 MPa for 30 min in order to

remove air bubbles that would interfere with the injection

of silicone rubber solution. After the water flush, the stems

are injected with silicone at 0.12 MPa for 24 h, and then

the silicone is allowed to cure (harden) for 3 more days at

room temperature (22 �C) or 12 h in an oven at 38 �C prior

to sectioning. The cured stems are cross sectioned at sev-

eral distances from the injection surface, and photographs

are taken for vessel diameter measurement and count.

Once injected and polymerized, the vessel walls can be

dissolved with strong acids leaving rubber micro casts of

the interior surface of vessels. When the micro casts are

viewed under SEM microscopy it is evident that the rubber

passes through pit pore apertures up to but not through the

pit membrane (Fig. 4); hence it is an ideal substance for

injection with an aim toward computing vessel-length

distributions (Andre 2002, 2005). However, for vessel-

length measurement, the stems are usually sectioned for

further analysis without acid treatment. In cross section the

vessels can be seen under a light microscope and the

addition of some UV light will make the silicone shine

brightly in rubber-filled vessels, making them distinct from

vessels filled with water or air.

Analysis methods

Once an adequate perfusion technique for a marker sub-

stance is in place, the analysis involves counting the

number of vessels filled with the marker substance at cut

surfaces and at various distances away from the injection

surface. The vessel count, N, can be the total colored

vessels in a stem or the number per unit area of wood cross

section. The analysis algorithm assumes that vessels begin

and end randomly over the length of the stem. Skene and

Fig. 4 a and b Theoretical stem segments containing randomly

distributed vessels (as defined in the text). Vertical bars indicate

vessel ends. Hatched area indicates extent of paint-filled vessels

infused from distance 0. c Count of paint-filled vessels versus distance

for short vessels (open circles) and long vessels (open squares).

d Output of DD algorithm for theoretical stem b above. Vessels of

different length are randomly distributed through the cross section of

wood, but they are arranged in decreasing order of size for clarity

without any loss of generality for the DD algorithm

648 Trees (2014) 28:643–655

123



Balodis (1968) provide formulas to compute vessel-length

distributions from a paint-infusion experiment. Later,

Zimmermann and Jeje (1981) simplified the analysis

equations into a tabular computational algorithm, i.e., the

double-difference (DD) algorithm explained in more detail

in Zimmermann (1983). The DD algorithm is used to

convert the counts of paint-filled vessels into a frequency

distribution (or probability density function, PDF) of the

number of vessels in size classes of length L.

The primary difference between the Skene and Balodis

(1968) analysis and the Zimmermann (1983) analysis is

that the former plotted counts of colored vessels, N, versus

distance, x, fit the plot to a smoothed function (N(x) = f(x))

and used interpolated decimal values to compute vessel-

length distributions, whereas Zimmermann (1983) used the

raw integer values. Zimmermann (1983) later provided an

easily comprehended visual illustration of how the DD

algorithm works and why it is correct.

The DD algorithm is basically a computation of the

second derivative times distance in finite steps using inte-

ger values (=count of paint-filled vessels). Zimmermann

demonstrated the method with a simple example of a stem

filled with vessels in two size classes (Fig. 4), wherein the

vessel ends occur ‘‘randomly’’ (arranged in Fig. 4 in an

orderly way which aids visualization without a loss of

generality). In this example the stem is cut into 20 seg-

ments of equal length (2 cm) and counts made at the

injection surface (x = 0) and at each cut-segment surface

(2, 4, 6… cm). In the DD algorithm, the first difference

between adjacent counts is computed and then the differ-

ence of the difference (Table 1) (=a second derivative of

integer steps). The result is multiplied by the distance, x,

from the injection surface (or the line number in Table 1

times segment length = distance from injection surface) to

yield the number of cells in each size class divided by

Dx. As seen in Fig. 4 the reconstruction of size classes is

quite precise if there are no ‘errors’. One error not previ-

ously addressed is the clustering of random ends. In Fig. 4

the distribution of vessel ends was described as ‘random’

but in fact is ‘equally spaced’ which is not the same as

random. The consequences of unequal spacing for the DD

algorithm will be treated later but for now we will continue

with the history.

The DD algorithm frequently provides PDFs that are

‘unreasonable’ because the algorithm results in some

computed size classes that are of zero or negative proba-

bility preceded and followed by other size classes that are

more reasonable positive numbers. In theory the negative

numbers could result from vessels ending more frequently

in specific regions of stems, e.g., near nodes or near vascular

insertions connecting stems to petioles. Zimmermann and

Jeje (1981) explained in detail how this could happen and

how it can be corrected by subtracting negative values from

the next larger positive value (the so-called Zimmermann

correction algorithm). These unreasonable values were

assumed to be counting errors and different ‘corrections’ to

fix the problem have been proposed by Zimmermann and

Jeje (1981) and by Ewers and Fisher (1989).

Ewers and Fisher (1989) argued that it is unreasonable

to assume that vessel lengths are in just a few discrete size

classes and hence they suggested subtracting the negative

size classes from the larger positive classes but then

dividing the positive value over missing size classes in

between (See Fig. 5). They also thought that many of the

negative size classes resulting from the DD algorithm

might result just from counting errors. It is easy to show

that minor adjustments in the counts (applied to real data

sets) have large impact on histogram bars. The use of

rubber has overcome this difficulty because ‘counting

errors’ cannot be attributed to poor filling of vessels with

pigment.

Table 1 The computations below illustrate the double difference

(DD) algorithm (Tyree and Zimmermann 2002) for integer data as

shown in Fig. 4, but it can also be used for decimal numbers as in

Fig. 9 based on a regression fit

Line

no.

x (cm) N First

difference

Second

difference

x (Second

difference)

%

N0 = DN/

Dx

DN0/Dx xDN0/Dx

1 2 20 -1.5 0 0 0

2 4 17 -1.5 0 0 0

3 6 14 -1.5 0 0 0

4 8 11 -1.5 0 0 0

5 10 8 -1.5 0.5 5 50

6 12 5 -0.5 0 0 0

7 14 4 -0.5 0 0 0

8 16 3 -0.5 0 0 0

9 18 2 -0.5 0 0 0

10 20 1 -0.5 0.25 5 50

11 22 0 0 0 0 0

10 =sum

In Fig. 4a we have a stem with two vessel lengths (10 and 20 cm) all

starting and ending ‘randomly’ along the X axis (it is traditional

illustrated as equally spaced which is not the same as randomly

spaced). N = the number of paint filled vessels versus distance, x, as

plotted in Fig. 4b. The first and second differences are calculated as

shown in the table then x times the second difference is computed.

Each difference is the number to the left of the difference minus the

number below, e.g., at x = 10 we have (8–5)/(10–12) = -1.5 for the

first difference and [-1.5 to (-0.5)]/(10–12) = 0.5 for the second

difference. The second difference is the number of vessels of the size

class divided by Dx; so for the short vessels in Fig. 4 this is 10/2 = 5.

The sum of the x (second difference) column (10) is used to calculate

the percentage of vessels in each size class. The table can be quickly

computed using Excel and is shown here to prove that the correct

answer is achieved in the DD algorithm, i.e., 50 % of the vessels are

10 cm long and 50 % are 20 cm long (Fig. 4c)

Trees (2014) 28:643–655 649
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Tyree (1993) advanced the analysis by looking at how

the DD algorithm reproduces known vessel length distri-

butions. He ran models on hypothetical shoots with known

vessel length distributions and has pointed out that the DD

algorithm commonly overestimates vessel probabilities in

the smaller size classes and underestimates probabilities in

the larger size classes (Fig. 5) and that neither the Zim-

mermann nor the Ewers–Fisher corrections work perfectly.

But Tyree (1993) did not consider the impact of ‘cluster-

ing’ of vessel ends that is to be expected in truly random

vessel-end distributions (see caption of Fig. 5 for details).

Additionally, more might be involved than just counting

errors. Perfused paint particles might pile up closer to the

injection surface after some paint has traveled to the vessel-

end, leaving gaps without paint. This would make vessels

appear and disappear (as visualized by filling with pig-

ment) and could contribute to the ‘‘impossible negative

probabilities’’.

Impact of clustering on the DD-algorithm

The examples of ‘random’ vessel ends used by Zimmer-

mann (1983) are not really random but rather are equally

spaced. Integer counts of truly random events are clustered

by the very nature of random events and this point has been

overlooked for 30 years. If you used a random number

generator program to compute 10 decimal numbers from

x = 0.000 to 0.999… those numbers would be randomly

spaced in the real number domain; if they were equally

spaced then they would not be random. The unreasonable

negative values and correction algorithms explained above

are primarily the result of random fluctuations which are

exacerbated by counting errors but not caused solely by

counting error. In other words, even if all counts were

precise the randomness of integer counts would still lead to

negative values in the PDF plots. In this regard, the Skene

and Balodis (1968) approach is less error prone (more

robust), because they filtered out the randomness through

curve fitting before applying the equivalent of a DD-

algorithm to decimal values rather than to integer values.

The decay of radioactive nuclei in the time domain is

another example of random events. A Geiger counter

makes this clustering obvious when the rates are slow

enough to discern time delays; similarly, the clustering of

random vessel ends will be more like the clustering of dots

in between the brackets: (… . .. . . ..). The DD-algorithm is

very sensitive to random clustering when applied to integer

values and we can use a statistical estimate of clustering to

Fig. 5 A hypothetical vessel length distribution was created (a) to

compute paint-filled vessel counts as in Fig. 4. The DD algorithm was

then applied to the table of values to reconstruct the vessel histogram

(b). The difference between (a) and (Fig. 4) is the large number of

vessel size classes. When the size classes are adjacent, the algorithm

slightly overestimates frequency of short vessels and underestimates

frequency of long vessels. c Another hypothetical vessel length

distribution like Left (a) was used plus a distinct (non-random) size

class (26 cm) beyond the smooth distribution. The DD algorithm

resolves this size class quite well in a. However, if the non-random

size class is too close to the random groups (d) then the DD algorithm

‘steals’ some size classes from the random groups and adds them to

the non-random group. DD ? Z = application of the Zimmermann

correction for non-random distributions and DD ? E&F = the

application of the Ewers and Fisher correction for non-random

distributions

650 Trees (2014) 28:643–655

123



demonstrate it. The number of radioactive decays (N) in a

time period (say 1 min) has a standard deviation of

SD = N1/2. Hence if N = 104 or 100 the SD = 100 or 10,

respectively. By analogy we can say a vessel count of 104

will have a SD = 1 % of N = 104 and 10 % N = 100. Dr.

Shabti Cohen (personal communication) reasoned that the

random ending of vessels should follow the statistics of

radioactive decay, which is exponential. Figure 6a shows a

smooth exponential decay process which is linearized by a

natural log plot (Ln(N) versus distance, x, which yields a

straight line). N can be either the total number of vessels in

a stem or the number per unit area. In order to demonstrate

the enormous impact of even small random errors we give

an example with very small random errors = 0.5 times the

SD.

In Fig. 6a we have plotted ‘random values’ that are

alternately ±0.5 times the SD above and below the expo-

nential line. We used these randomized values in a DD

algorithm and one example of the output is shown in

Fig. 6b. Quite large deviations from the actual probability

distribution function (PDF = gray bars) are obviously

introduced by the DD algorithm (white and black bars);

hence this algorithm does not work well when statistical

fluctuations cause clustering of vessel-ends of the magni-

tude that would be expected with normal stochastic pro-

cesses. The reader can repeat the computation in Fig. 6b

using alternate errors of just one SD, and it will be seen that

negative values result.

The Cohen method overcomes the impact of clustering

At about the same time as the adoption of the rubber-

injection method, Cohen et al. (2003) have overcome the

above limitations of the DD algorithm by using a different

computational algorithm that leads to a well-defined dis-

tribution function to which statistics can be applied. Cohen

et al. (2003) still assume vessels end randomly in space, but

they point out that an exponential extinction function is the

logical consequence of this random end assumption, which

is a point which also escaped the notice of Skene and

Balodis (1968). An analogy is radioactive decay. A

radioactive molecule comes to an end at an instant in time

when the nucleus disintegrates. The random end of a

radioactive substance in the time domain is analogous to

the random end of a vessel in the distance domain. Hence

the number of vessels remaining versus distance should

decrease exponentially with distance in the same way as

the number of radioactive molecules remaining at a time

should decrease exponentially with time. Cohen et al.

(2003) and Sperry et al. (2005) experimentally confirmed

this exponential decay for the air-injection and rubber-

injection methods, respectively, which implies an equation

of the form

N ¼ No expðkvxÞ; ð1Þ

where No = the number of vessels (or number per unit

area) filled at x = 0 and N is the number at x [ 0, and kv is

a fitting coefficient (a negative quantity for an exponential

decay); hence

lnðNÞ ¼ lnðN0Þ þ kvx ð2Þ

From this Cohen et al. (2003) and Sperry et al. (2005)

derived the PDF shown in Eq. (3) below by using the

differential equation embodied in the DD-algorithm.

Equation (3) is equal to the second derivative of Eq. (2)

times x. Subsequently Cohen (personal communication)

identified his PDF to be mathematically equivalent to a

gamma distribution with parameters (2, k), where 2 is the

shape parameter and k is the inverse of a scale parameter

(usually symbolized as h in gamma distribution PDFs):

Px ¼ xk2
v expðkvxÞ ð3Þ

In Eq. (3) Px is the probability of vessels of length x. Px has

units of inverse distance; the distance unit is there so that

Fig. 6 a Solid line is a smooth exponential decay plotted in a natural

log transform. The scatted points above and below the line are ±0.5

times the standard deviation expected for random events where

SD = N1/2. The regression values show slope and intercept for the

two cases. Note that the R2 values are near 0.995. b Even quite small

random errors have a large impact on computed PDFs. The gray bars

are the actual PDF values. DD Z means PDF computed with the DD

algorithm and the Zimmermann correction and DD E&F means DD

with the Ewers and Fisher correction
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the area under the PDF curve equals a dimensionless

probability of 1 (or 100 %). When Eq. (3) is represented as

a bar histogram, then each bar is a size class and the height

is the probability without units so the sum of the bars

should equal 1 or 100 %. Gamma functions have well-

defined statistical properties. For a gamma PDF with shape

factor = 2, the mode = -1/kv (=the most common length)

and the mean vessel length, �Lv ¼ �2=kv. Note that the

mean refers to the mean of all the vessels in a cross section

at the point of infusion. It is important to note that this

mean vessel length is not equal to the mean of all the

vessels in a volume of stem, which would be an acceptable

but different definition of ‘population’ mean.

Equation (3) was derived from the mathematical defi-

nition of the DD algorithm, but instead of computing Px

from discrete, adjacent values of N it is computed contin-

uously from a best-fit linear regression of the log-trans-

formed exponential decay, thus eliminating the ‘counting

errors’ and ‘unreasonable’ zero and negative probabilities

that result from the discrete DD algorithm which might not

be the result of counter errors but rather driven by the

stochastic of random clustering of vessel ends. If the lit-

erature had followed the curve-fitting approach of Skene

and Balodis (1968), the analysis of vessel length distribu-

tions (PDFs) would have advanced much more rapidly as

explained below but first we will continue with the history

of analysis because this will explain some deviations from

log-linear fits that addresses the need for more studies in

the future.

Cai et al. (2010) used the Cohen method to address the

question: ‘Are wide vessels (large-diameter vessels) also

long vessels?’ When examining mean vessel lengths (�Lv)

between species, �Lv seems to increase with mean vessel

diameter ( �Dv). Readers are directed to Jacobsen et al.

(2012) for an excellent meta-analysis of vessel lengths.

Ewers et al. (1990) showed that the maximum vessel

diameter correlated linearly with maximum vessel length

between species of woody vines and shrubs (R2 = 0.62

p = 0.001). Hacke et al. (2006) have summarized between-

species values (28 species) of �Lv and �Dv, and showed that a

plot of Log(�Lv) vs Log ( �Dv) has a slope of 1.48 and

R2 = 0.63. Cai et al. (2010) use the symbols Lc and Dc to

indicate the vessel length and vessel diameter in a bin size

class, respectively.

An examination of a few species indicates a dependence

of Lc on Dc but not enough examples are published to know

if this dependence follows a specific function, e.g., linear or

exponential. Two cottonwood clonal hybrids plus an aspen

species were studied by Cai et al. 2010. In one the Lc versus

Dc was clearly linear, another was clearly exponential, and

the third was curvilinear, but the R2 was better for the

linear than the exponential model (see Fig. 3 in Cai et al.

2010). The method of obtaining these curves requires a

slight modification of the Cohen method. Instead of

counting rubber-filled vessels, the diameter of every rub-

ber-filled vessel in each section is measured. Then the

vessels are divided into bin size classes and plot the N in

each bin size class versus x for analysis by the Cohen

method. This is repeated for each size class to yield

the graphs shown in Fig. 7 (re-plotted from Cai et al.

2010).

Can we divine the truth?

Can we divine the truth about vessel length PDFs using the

Cohen method? The Cohen method assumes random vessel

ends and through mathematical analysis this assumption

leads to a prediction of log-linear plots as in Fig. 6. Fur-

thermore, the mathematical consequence of log-linear plots

leads to the statistical prediction of a specific class of PDFs

(class 2 gamma distributions). But how do we confirm that

vessel length PDFs are closer to a class 2 gamma distri-

bution than some other variant function?

The way to advance studies is to return to the more

general approach taken by Skene and Balodis (1968),

which unfortunately was not explained clearly in the ori-

ginal text. We interpret their approach as follows: (1)

Infuse stem segments with a colorant that travels the full

length of cut open vessels. (2) Count the number (N) of

open (colored) vessels versus distance from the infusion

point. (3) Obtain a smoothed curve fit to these data, i.e., a

Fig. 7 These log-linear plots are examples of number of vessels per

unit area, N, versus distance from injection surface in 4 diameter size

classes. Points are means and SD of five branches. The y-axis is a

natural log transform with linear regressions shown. Average vessel

length of each diameter size class equals -2/slope
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function N = f(x). (4) Perform a DD computation based on

the smoothed function from which a vessel-length distri-

bution curve (PDF) can be calculated. Cohen et al. (2003)

took an approach that was close to but not exactly like the

above four steps, because they assumed random vessel

ending that mathematically resulted in a theoretical func-

tion that was exponential for N = Noexp(kx). This

assumption leads specifically to a class 2 gamma distri-

bution for the PDF after DD computation (x d2N

dx2
which

yields Eq. 3). Hence finding a more correct distribution

requires doing measurements to see how much the actual

function of N = f(x) differs from the log-transformed

function in Eq. (2), because divergence from a log-linear

function implies a different PDF for real stems.

It is also possible to take a theoretical approach to how

much other simple distribution functions would affect the

shape of the log-transformed plots. This will provide some

guidance on whether you would detect other PDF values by

looking at the deviations from linearity in log-transformed

data. This theoretical exercise is done in Fig. 8a and b, for

three cases: (1) Assuming all vessels are the same length

(10 cm), but they begin and end in random locations along

the stem axis, which we call a single distribution. (2) A flat

distribution where there are 10 groups of vessels where

Fig. 8 a A theoretical plot of

natural log of vessel counts

versus distance for three cases

that are not class 2 gamma

functions to illustrate the extent

of non-linearity. b The residuals

of a. See text for details. c and

d, e and f, and g and h are

similar to a and b except we

plot real values and show real

residuals for 3 Populus species

or hybrids. See text for details
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10 % of the vessels in each group are 1, 2, 3 … 10 cm

long, but begin and end in random locations along the stem

axis, and (3) an approximately normal distribution of 11

groups with the mean length being 6 cm, the shortest 1 cm

and the longest group 11 cm. The log-transformed theo-

retical data are shown in Fig. 8a. None of the regressions

are particularly linear, but the R2 values are all[0.9. All of

the curves show convex residuals (=the deviation from the

regression line and the actual value) as shown in Fig. 8b.

These residual deviations would be easily detectable in an

experimental data set, but so far the residuals seen in real

data sets are smaller and concave rather than convex.

Figure 8c, e, and g shows the deviations from linearity

from the data sets published in Cai and Tyree (2010) for

three Populus clones/species; and the residuals are all

smaller and concave rather than convex. From this we

conclude that real vessel length distributions are not

single, flat or normal. Cai and Tyree (2010) provided data

in support of the notion that large-diameter vessels are

longer than small-diameter vessels. We also know that

small-diameter vessels are more numerous than large-

diameter vessels, so the consequence of this would be

concave residuals. In Fig. 9a we show the log-trans-

formed data from Fig. 8e fitted with a second-order

polynomial which increases the R2 from 0.993 to 0.9993.

Another measure of the closeness of fit is the root-mean-

square error (Erms), which is mathematically similar to

the standard deviation of the data points around the best-

fit line. The log-linear fit had an Erms = 0.1077 vs

0.03586 for the polynomial fit, which means that the

polynomial fit is about three times more precise than the

linear fit. We have used the two regressions to compute

N versus x at 0.2 cm intervals from 0 to 5 cm, then used

the DD-algorithm on the data set to compute the PDF.

The solid line in Fig. 9b is the PDF for the polynomial fit

and the dashed line is for the log-linear fit, which is a

class 2 gamma distribution (with shape factor = 2). We

suspect that the solid-line PDF is more correct than the

dashed-line PDF and the main difference is that there are

more short vessels and fewer long vessels.

Future research might focus on obtaining log linear

regressions of vessel counts starting at higher counts than

normal, e.g., N = 10,000 at x = 0 over a larger cross

section of wood area, A. Higher counts will reduce the

standard deviation on the values of n = N/A (vessel count

per unit area) because if vessels end randomly in the dis-

tance domain then the standard deviation will be equal to
ffiffiffiffi

N
p

=A. Reducing the standard deviation will increase the

precision of ln(n) and hence the precision of the residuals,

and will allow us to compute vessel-length distributions

with more precision. Further insights can be gained by use

of cinematographic technique (Zimmermann 1971, 1978)

or the newer high-resolution X-ray imaging techniques

(Brodersen et al. 2011).

Conclusions

Accurate vessel length determination requires the infusion

of stem or root sections with a pigmented substance that

will travel through many perforation plants of vessel ele-

ments but not pass through the nano-scale pores of pit

membranes. Today the substance of choice is silicone

rubber compound impregnated with dye that is insoluble in

water but capable of being held in suspension in un-poly-

merized silicone rubber. Although the DD algorithm has

been frequently used in the past to compute vessel-length

distribution, the DD algorithm has been revealed in this

review to be extremely sensitive to the clustering of vessel

ends, which is the statistical consequence of random vessel

ends. The Cohen method of analysis is recommended to

turn counts of rubber-filled vessels into a vessel-length

Fig. 9 a Is a re-plot of Fig. 8e with a second-order polynomial fit.

b The solid line shows the computed vessel length distribution based

on the more accurate polynomial fit. The dashed line shows the class

2 gamma distribution computed from the linear fit. There are some

vessels longer than 5 cm, but their probability distributions cannot be

calculated beyond the range of measured data
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distribution (PDF). The Cohen-method (Cohen et al. 2003)

assumes a class 2 gamma distribution function which is

mathematically consistent with a log-linear plot of count

versus distance. Real plots are not exactly log-linear, which

suggests a slight deviation from a class 2 gamma PDF. This

deviation could be caused by vessel length being a function

of vessel diameter as proposed by Cai et al. (2010), but

may be due to other causes too. Researchers interested in

figuring out the ‘real’ vessel length PDF may want to return

to the statistical approaches of Skene and Balodis (1968),

which place no restriction on the real PDF as shown in

Fig. 9.
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