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Abstract A growing number of investigations on uncertainty quantification for hydrolog-
ical models have been widely reported in past years. However, limited studies are found on
uncertainty assessment in simulating streamflow extremes so far. This article presents an
intercomparison of uncertainty assessment of three different well-known hydrological mod-
els in simulating extreme streamflows using the approach of generalized likelihood uncer-
tainty estimation (GLUE). Results indicate that: (1) The three modified hydrological models
can reproduce daily streamflow series with acceptable accuracy. When the threshold value
used to select behavioral parameter sets is 0.7, XAJ model generates the best GLUE
estimates in simulating daily flows. However, the percentage of observations contained in
the calculated 95 % confidence intervals (P-95CI) is low (<50 %) when simulating the high-
flow index (Q10). (2) Decreasing average relative length (ARIL), P-95CI and increasing
average asymmetry degree (AAD) are found, when the threshold value increases for both
daily-flows and high-flows. However, there is a significant inconsistence between sensitivity
of daily-flows and high-flows to various threshold values of the likelihood function.
Uncertainty sources from parameter sets, model structure and inputs collectively accounts
for above sensitivity. (3) The best hydrological model in simulating daily-flows is not
identical under different threshold values. High P-95CIs of GLUE estimate for high-flows
(Q10 and Q25) indicate that TOPMODEL generally performs best under different threshold
values, while XAJ model produces the smallest ARIL under different threshold values. The
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results are expected to contribute toward knowledge improvement on uncertainty behaviors
in simulating streamflow extremes by a variety of hydrological models.

Keywords Hydrologicalmodel . Uncertainty . Intercomparison . GLUEmethod . Streamflow
extremes . Threshold

1 Introduction

Hydrological models have been widely used to investigate many practical and pressing
issues during planning, design, operation and management of water resources systems
(Benke et al. 2007; Lin et al. 2007). Lumped precipitation-runoff models, wherein a
catchment is treated as a single homogeneous unit, remain in widespread use, because such
models tend to be parametrically parsimonious while yielding good model performance after
calibration using historical watershed input–output data. On the other hand, distributed
models are considered to provide a more realistic representation of the spatial heterogeneity
of hydrological processes. However, the shift from lumped to distributed hydrological
modeling significantly increases the complexity of the parameter estimation problem. It also
raises many important questions related to parameter identifiability and equifinality (Beven
2001), thereby counterbalancing the theoretical advantages of distributed models. The
practical consequence is that lumped models, which have much lower data requirements,
are often preferred over distributed models.

The assessment of uncertainty of hydrological models is of major importance in hydrologic
modeling. Generally, there are three principal sources contributing to modeling uncertainty:
errors associated with input data and data for calibration, imperfection in model structure, and
uncertainty in model parameters (e.g., Refsgaard and Storm 1996). Xu et al. (2006) demon-
strated that the quality of precipitation data influences both simulation errors and calibrated
model parameters. Diaz-Ramirez et al. (2012) and Wu et al. (2008) estimated the uncertainty in
simulating hydrologic processes induced by the input data (e.g. rainfall and elevation).
Engeland et al. (2005) showed that the effect of the model structural uncertainty on the total
simulation uncertainty of a conceptual water balance model was larger than parameter uncer-
tainty. Marshall et al. (2007) stated that the uncertainty in model structure requires developing
alternatives, where outputs from multiple models are pooled together in order to generate an
ensemble of hydrographs that are able to represent uncertainty. Bahremand and Smedt (2010)
performed sensitivity and predictive analysis of the model parameters in the Torysa River basin
usingWetSpa hydrological model, proving that the parameter uncertainty of the model does not
result in a significant level of predictive uncertainty. Kavetski et al. (2002) and Chowdhury and
Sharma (2007) investigated input data uncertainty by artificially adding noise to input data and
then formulating an empirical relationship between this noise and parameter error. Many other
examples of the methods dealing with model and data uncertainty are available in the
hydrological literatures (e.g., Georgakakos et al. 2004; Carpenter and Georgakakos 2004;
Kavetski et al. 2006a, b;Talebizadeh et al. 2010).

A variety of methods have been developed to deal with parameter uncertainty and
modeling uncertainty, i.e., to provide posterior distributions for parameters and runoff
modelling. Among these methods, the generalized likelihood uncertainty estimation
(GLUE) method, developed by Beven and Binley (1992), and the formal Bayesian method
using Metropolis-Hastings (MH) algorithm, a Markov Chain Monte Carlo (MCMC)
methodology, are extensively used (Freer et al. 1996; Beven and Freer 2001a; Kuczera
and Parent 1998; Bates and Campbell 2001). GLUE is easy to implement, requiring no
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modifications to existing source codes of simulation models. Therefore, many users are
attracted by GLUE. Stedinger et al. (2008) pointed out that GLUE methodology can be
useful for model calibration and uncertainty analyses only if a proper likelihood function for
normal independent distribution error can be found. Other studies show that threshold values
and ranges of parameters are important factors influencing the results from the GLUE
method (Yang et al. 2008; Vazquez et al. 2009; Jin et al. 2010; Li et al. 2010, 2011).

Recently, public awareness of hydrological extreme events has increased sharply, with a
number of mortalities and damages triggered by disasters such as floods and storms (Yang et al.
2010). Therefore, simulation and prediction of streamflow extremes has become a hot spot,
both for hydrological science research, water and watershed management and development
strategies. However, the uncertainty sensitivity using the GLUE approach with different
measures has not been evaluated in the past. Meanwhile, studies addressing uncertainty of
different hydrological models in simulating extreme streamflows are still very limited so far.
Therefore, this study strives to offer an intercomparison of uncertainty assessment of three
hydrological models (i.e. HBVmodel, XAJ model and TOPMODEL) in simulating streamflow
extremes using the well-tested GLUE approach. The main objectives of the paper are hereby to:
(1) quantify different uncertainty behaviors of three typical lumped and semi-distributed
hydrological models in simulating runoff processes with particular highlights of their potential
capabilities in reproducing high-flows; and (2) evaluate and compare uncertainty sensitivity
using the GLUE approach with different choices of threshold values and various uncertainty
meansures using sensitivity analysis. The results are expected to contribute toward knowledge
improvement on simulation and projection of hydrological extremes in response to climate
change. Thereafter, the work is potentially beneficial for policymakers and stakeholders in local
water hazard mitigation management.

2 Study Region and Data

2.1 Study Area

The headwater region of the Yellow River refers to the catchment above the Longyang Gorge
(Fig. 1, IWMI and YRCC 2003). Administratively, this region belongs to the Qing-Tibetan
Plateau of China. The headwater region of theYellowRiver has a drainage area of 121,000 km2.
It covers approximately 15% of the entire YellowRiver’s drainage basin, while it supplies 38%
of the River’s total runoff. This region is a very important source of streamflow for the entire
Yellow River basin, and is referred to as “the cistern of Yellow River”. The mean altitude of this
area is about 4,000 m.. The prevailing climate in the region is cold and dry without obvious
seasonal variations. The annual average precipitation is about 450 mm. More than 70 % of the
total annual precipitation falls in the flood season from July to October. Annual average air
temperature varies between −4 °C and 2 °C from southeast to northwest (Xu et al. 2006).
Plentiful perennial and seasonal frozen grounds exit in the region.

The increase in temperature in the high altitude area is more sensitive than that in the low
altitude due to global warming. In recent years, problems have emerged with increasing
pressure due to human activity and economic development, such as degradation of environ-
ment, degradation of meadows, and acceleration of soil erosion, and therefore have attracted
increasing attention. Subsequently, there have been many studies on the evaluation of
climate change, such as temperature increase, annual precipitation change, and induced
runoff change (Arora 2002). However, knowledge on change of streamflow extremes over
the region is still insufficient so far.
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2.2 Data

The hydrological and meteorological observations (1960–2011) including: precipitation, pan
evaporation, cloud covering, temperature, wind speed, humidity, radiation, water vapor
pressure at a total of 11 stations (Table 1), and discharge at Tangnaihe gauge are collectively
used in the study. These datum were collected from the Hydrology Bureau, Yellow River
Conservancy Commission (YRCC) of China and the National Climate Center. The quality of
observational data in China meets the International Association of Hydrological Science and

Table 1 List of 11 meteorological gauges (1960–2011) in the head region of the Yellow River (Source of
data: The National Center of Climate, China)

Site name Site number Longitude Latitude Average annual
temperature (°C)

Average annual
precipitation (mm)

Xinghai 52943 99.98°E 35.58°N 1.36 353.6

Tongde 52957 100.65°E 35.27°N 0.38 429.7

Zeke 52968 101.47°E 35.03°N −2.12 474.3

Maduo 56033 98.22°E 34.92°N −3.72 308.2

Zhongxin zhan 56041 99.20°E 34.27°N −3.79 459.3

Dari 56046 99.65°E 33.75°N −0.88 543.3

Henan 56065 101.60°E 34.73°N 0.31 580.4

Jiuzhi 56067 101.48°E 33.43°N 0.61 762.2

Maqu 56074 102.08°E 34.00°N 1.53 602.3

Ruoergai 56079 102.97°E 33.58°N 1.11 647.6

Hongyuan 56173 102.55°E 32.80°N 1.43 753.0
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Fig. 1 Map of the Upper Yellow River in China
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World Meteorological Organization’s standards. In this study, 1960–1986 is calibration
period and 1987–2011 is validation period.

3 Methodology

3.1 Three Hydrological Models

The three models included in the study (e.g. HBV model, XAJ model and TOPMODEL) are
well-knownmodels in the hydrology community and details of the model structure and equations
were widely presented in the hydrological literatures in past. Hereby, the below sections only
provide brief introduction. In the following section, modifications of the TOPMODEL and XAJ
model are addressed, which presents how a snow-routine was added to the models.

3.1.1 HBV Model

The HBV model (Bergström 1976, 1995) is a precipitation-runoff model, which includes
conceptual numerical descriptions of hydrological processes at the catchment scale. In
different model versions, HBV has been applied in more than 40 countries all over the
world (Bergström 1995; Seibert 2003). The model is normally run on daily values of
precipitation and air temperature, and daily or monthly estimates of potential evaporation.
The model includes three main modules: snow accumulation and melt, soil moisture routing,
and river routing and response modules (Abebe et al. 2010). Detailed description of the
model can be found in above mentioned references, it is therefore not presented here.

3.1.2 TOPMODEL

TOPMODEL, proposed by Beven and Kirby (1979), is a physically-based watershed model
that simulates the variable-source-area concept of streamflow generation (Quinn et al. 1995).
Since the model has been widely reported across the world (Beven and Kirby 1979; Beven
1997; Huang and Jiang 2002), details will not be addressed here.

3.1.3 Xin’anjiang (XAJ) Model

XAJ model (Zhao et al. 1980) is a well-known lumped watershed model. The model has
been widely used in humid and semi-humid regions of China for continuous hydrological
simulation on a daily time scale and for rainstorm flood forecasting on an hourly time scale
in past years. In such regions, runoff is generated only when the storage exceeds the field
capacities. Runoff processes in XAJ model includes surface-, subsurface-runoff and ground-
water base-flow. The evapotranspiration processes in the soil column are simulated in three
layers. The routing procedures in stream network or channel system are modelled by means
of Muskingum routing scheme. Recently, more practices to project future scenarios of
hydrological processes and water resources in response to climate change have been widely
reported in a variety of regions in China (e.g. Jiang et al. 2007; Ju et al. 2009).

3.2 Snow Accumulation/melt Routines

Generally, TOPMODEL and XAJ model do not have snow accumulation and melt simula-
tion components. To enable simulating these processes in the study region, the two models
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are modified by adding the snow accumulation and melting routines as follows. Snow
accumulation is estimated from precipitation by using atmospheric temperature records to
separate the precipitation into snow and rainfall (Davies 1997). In the existing approaches to
model snowmelt, the simple degree-day approach is the most commonly used method in
operational hydrology and has been successfully verified word-wide over a range of catch-
ments, physical characteristics and climate (e.g. Davies 1997; Rango 1992), which is also
used in this study. The basic equation of the degree day method is:

M ¼ Cm T � Tmeltð Þ ð1Þ
Where M is the daily snowmelt (mm/day), Cm is the so called degree-day factor

(mm/°C per day), T is the mean daily temperature (°C), and Tmelt is the critical temperature
for melting to occur (°C). The degree–day factor is an empirical constant that accounts for all
the physical factors not included in the model, which varies with the land cover.

3.3 The Generalized Likelihood Uncertainty Estimation (GLUE) Method

TheGeneralized LikelihoodUncertainty Estimation (GLUE)methodwas proposed byBeven and
Binley (1992) and has been widely used to model conditioning and uncertainty estimation in a
variety of models of complex environmental systems (e.g. Beven and Binley 1992; Beven 1993;
Aronica et al. 1998; Lamb et al. 1998; Cameron et al. 1999; Beven and Freer 2001a, b; Blazkova
and Beven 2004; Iorgulescu et al. 2005). The GLUE methodology aims to identify behavioural
models from a large sample of model runs with different parameter sets, chosen randomly from
the specified ranges for each parameter byMonte Carlo simulation (Beven andBinley 1992; Freer
et al. 1996). Here, the performance of each model is evaluated by multiple performance or
likelihood measures. In most applications of GLUE, parameter sampling is carried out using non-
informative uniform sampling without prior knowledge of individual parameter distribution other
than a feasible range of values (Beven and Freer 2001b). Moreover, the likelihood function and
the threshold are subjectively determined and this was discussed by Freer et al. (1996).

In this study, the Nash-Sutcliffe efficiency (NS, Nash and Sutcliffe 1970,) was chosen as
the likelihood function as in many other studies:

NS ¼ 1�
P

Qobs � Qsimð ÞP
Qobs � Qobs

� � ¼ 1� σ2
i

σ2obs
ð2Þ

Where Qobs represents mean values of observed streamflows. σ2
i is the error variance for

the ith model (i.e. the combination of the model and the ith parameter set) and σ2
obs is the

variance of observations.
Tables 2, 3, and 4 show the parameters considered in the Monte Carlo simulation of this

study, together with their respective ranges. Each parameter value is drawn uniformly and
independently from the ranges and a total of 20000 parameter sets were chosen to drive
TOPMODEL, XAJ and HBV models.

3.4 Uncertainty Measures in GLUE-based Hydrological Simulation

In order to provide a quantitative evaluation of the difference among the results of the three
different models, the percentages of observations that are contained in the calculated 95 %
confidence intervals (Jin et al. 2010) are calculated:

P � 95CI ¼ NQin

n
� 100% ð3Þ
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where n is the number of time steps; NQin is the number of observations which are contained
in the calculated confidence intervals.

The Average Relative Length (ARIL) is proposed by Jin et al. (2010) as follows:

ARIL ¼ 1

n

X LimitUpper;t � LimitLower;t
Robs;t

ð4Þ

LimitLower,t and LimitUpper,t are the lower and upper boundary values of 95 % confidence
intervals, and Robs,t is the observed.

The average asymmetry degree (AAD) of the prediction bounds (Xiong et al. 2009) with
respect to the corresponding observed discharge is simulated:

AAD ¼ 1

n

Xn

i¼1

LimitUpper;t � Robs;t

LimitUpper;t � LimitLower;t
� 0:5

����

���� ð5Þ

An AAD value less than 0.5 indicate that, on average, the observed discharge lie within
the uncertainty bands. Whereas the greater the value of AAD, the more asymmetrical the
uncertainty bands are around the observed water levels (Xiong et al. 2009).

The Average deviation amplitude (ADA) is used by Xiong et al. (2009) as follows:

ADA ¼ 1

n

Xn

i¼1

1

2
LimitUpper;t þ LimitLower;t
� �� Robs;t

����

���� ð6Þ

Table 2 Parameter ranges used in the Monte Carlo simulations for HBV

Parameter Definition Range Optimal value

TT(°C) Threshold temperature 0–1 0.03

CFMAX(mm/°C) Degree-day factor 1.5~4 2.94

FC(mm) Maximum soil moisture storage 90–200 99

LP Threshold for evaporation reduction 0.7–1 0.81

BETA Parameter that determines the relative
contribution to runoff from rain or snowmelt

1–4 2.29

PERC(mm/day) Maximum percolation from the upper to
the lower groundwater box

0–1.5 0.63

UZL(mm) Threshold parameter 0–100 60.43

K0 Recession coefficient of upper zone 0.05–0.9 0.83

K1 Recession coefficient of lower zone 0.01–0.3 0.05

K2 Recession coefficient of deep zone 0.001–0.1 0.03

MAXBAS Transformation function parameter 1–10 1.30

Table 3 Parameter ranges used in the Monte Carlo simulations for TOPMODEL

Parameter Definition Range Optimal value

SRMAX (m) The soil profile storage available for transpiration 0.01–0.02 0.013

SR0 (m) The initial storage deficit in the root zone 0–0.1 0.0026

SZM(m) The parameter of the exponential transmissivity
function or recession curve

0.002–0.09 0.07

T0 (m
2/h) Effective lateral saturated transmissivity 0.1–5 0.25

Rv(m/h) The velocity of overland flow concentration 2000–2700 2273
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Both ARIL and P-95CI were recently applied in uncertainty quantification of hydrolog-
ical modelling (Jin et al. 2010; Li et al. 2010, 2011). They are different criterion to measure
different uncertainty in hydrological simulations. Generally, P-95CI can be used to quantify
the random and systematic errors in simulations. From the statistical perspective, high values
of P-95CI (e.g. >50 %) stand for more random errors in simulations. Whereas, low P-95CI
values (e.g. <50 %) suggest systematic errors are major sources of uncertainties in simu-
lations. However, ARIL stands for the systematic error in most simulations. In most cases, it
can be used to assess the systematic error in hydrological simulations.

4 Results and Discussion

4.1 Model Calibration and Verification

This section presents an inter-comparison between the observed and simulated daily stream-
flows (1960–2005) by three hydrological models. The statistics presented here are RMSE,
correlation coefficient (R2) and Nash-Sutcliffe (NS) coefficient of efficiency (Eq. 20).
Table 5 summarizes the performance scores for three hydrological models in the headwater
catchment of Yellow River. It suggests that three models can reproduce historical stream-
flows well. In both calibration and validation, HBV model has the highest skills (lowest
RMSE, highest R2 and NS) followed by XAJ and TOPMODEL.

Table 4 Parameter ranges used in the Monte Carlo simulations for XAJ model

Parameter Definition Range Optimal value

Kc Ratio of potential evapotranspiration to pan evaporation 0.2–0.4 0.35

UM (mm) Averaged soil moisture storage capacity of the upper layer 10–40 33

LM (mm) Averaged soil moisture storage capacity of the lower layer 60–90 80

C Coefficient of the deep layer, that depends on the proportion
of the basin area covered by vegetation with deep roots

0.05–0.2 0.06

WM (mm) Average soil moisture storage capacity of the whole layer 120–300 225

B Exponential parameter with a single parabolic curve, which
represents the non-uniformity of the spatial

0.3–0.7 0.65

Im Percentage of impervious and saturated areas in the catchment 0.005–0.02 0.01

SM (mm) Areal mean free water capacity of the surface soil layer, which
represents the maximum possible deficit of free water storage

5–50 24

EX Exponent of the free water capacity curve influencing the
development of the saturated area

1–1.65 1.58

KG Outflow coefficients of the free water storage to groundwater
relationships

0.05–0.7 0.36

KI Outflow coefficients of the free water storage to interflow
relationships

KG+KI=0.7 0.34

CI Recession constants of the lower interflow storage 0.5–0.9 0.87

CG Recession constants of the groundwater storage 0.95–0.998 0.99

CS( UH) Recession constants in the lag and route method for routing
through the channel system within each sub-basin

0.5–0.8 0.78

L(h) Lag in time (routing period) 0–3 1

KE(h) Parameter of the Muskingum method KE=△t 24

XE Parameter of the Muskingum method 0–0.5 0.12
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4.2 Uncertainty Analysis

4.2.1 Daily Streamflow

Intercomparison of the uncertainty measures among the three hydrological models In this
section, different uncertainty measures of the three hydrological models in simulating daily
runoff are quantified and compared using a threshold value of 0.7 in the GLUE estimates.
Here, the percentage of observations that are contained in the calculated confidence intervals
(P-95CI) is used here as an uncertainty measure. In this study, XAJ model produces the best
simulation (P-95CI=71.57 %).

Table 5 Skill scores for three hydrological models in calibration (1961–1986) and validation (1987–2011)

Calibration and validation XAJ TOP HBV

Calibration (1960–1986) RMSE 272.00 271.95 256.68

Correlation 0.90 0.90 0.93

NS 0.80 0.80 0.82

Validation (1987–2011) RMSE 260.56 248.14 223.86

Correlation 0.85 0.86 0.91

NS 0.70 0.73 0.78
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Fig. 2 Comparison of 95 % confidence interval of runoff with threshold of 0.7 using Xinanjiang model. (a) in
1981 flood year; (b) in 1968 normal year; (c) in 1997 dry year
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For sake of a clear illustration, 3 typical years are presented here (i.e. 1981 as a typical
flood year, 1968 as a normal year, and 1997 as a dry year). As can be seen from Figs. 2a-4a,
XAJ model performed best in simulating daily flow in the flood year with the uncertainty
bounds include a large percentage of the observations, about 82.19 % (Table 6). The GLUE
estimate results of TOPMODEL (Fig. 3a) and HBV (Fig. 4a) are not as satisfactory as those
obtained from XAJ, mainly due to overestimation or underestimation of the hydrograph in
dry period. Similarly in the normal year, the best performance is also obtained by XAJ
model (Fig. 2b).

Figures 2c, 3c, 4c show the 95 % confidence intervals of daily discharge in the dry year
for the three models (Threshold=0.7). The similar performance is shown for the XAJ model
(P-95CI=64.66 %) and TOPMODEL (P-95CI=65.48 %). However, the P-95CI obtained
from HBV is less than 50 % (about 48.30 %), because the flow during the dry (wet) period is
always under (over) estimated. Whereas, the simulated flood peak time during spring
matches well with observations.

In summary, the XAJ model generally reproduces satisfied daily runoff processes when
threshold value equals to 0.7, particularly the observations in dry period (December-February)
are completely within the confidence intervals (P-95CI=98.46 %). TOPMODEL works better
in wet period (June-August), however, its performance during dry period is poor (P-95CI=
9.34 %). Meanwhile, the GLUE uncertainty bounds produced by TOPMODEL (HBV model)
are above (below) the observations during dry period.

Table 6 Intercomparison of uncertainty measures in simulating daily streamflow by three hydrological
models under different threshold values (0.5, 0.6, 0.7)

Measures Time Period 0.5 0.6 0.7

XAJ TOP HBV XAJ TOP HBV XAJ TOP HBV

P-95CI (%) 1960–2011 83.25 83.35 72.36 79.53 70.74 64.94 71.57 59.11 61.75

1981 89.86 97.53 71.51 87.67 81.92 66.30 82.19 67.4 63.72

1968 77.32 81.69 68.85 76.23 74.04 63.93 69.67 54.1 60.26

1997 92.60 98.9 73.42 85.48 78.9 58.90 64.66 65.48 48.30

Dry period 98.84 75.24 51.62 98.79 32.74 42.98 98.46 9.34 31.24

ARIL 1960–2011 1.45 1.37 1.07 1.34 1.21 0.91 1.13 0.98 0.73

1981 1.46 1.49 1.06 1.32 1.29 0.88 1.19 1.02 0.71

1968 1.43 1.27 1.02 1.36 1.11 0.87 1.11 0.87 0.70

1997 1.49 1.72 1.24 1.36 1.52 1.04 1.14 1.23 0.84

Dry period 2.69 2.05 1.05 2.6 1.78 0.93 2.35 1.41 0.72

ADA (m3/s) 1960–2011 178.98 183.48 182.49 176.36 187.51 182.46 166.08 186.20 178.33

1981 213.16 180.92 271.01 214.38 182.86 268.58 198.42 192.52 231.48

1968 221.31 247.24 247.03 222.73 248.93 240.03 203.85 243.62 231.66

1997 116.22 150.05 197.91 117.62 156.24 205.36 135.82 161.64 221.97

Dry period 69.39 159.63 84.16 61.60 175.41 107.21 44.42 175.92 93.58

AAD 1960–2011 0.29 0.37 0.46 0.33 0.43 0.53 0.43 0.54 0.71

1981 0.24 0.22 0.50 0.28 0.26 0.77 0.31 0.36 1.01

1968 0.36 0.37 0.64 0.41 0.42 1.03 0.55 0.52 1.04

1997 0.23 0.26 0.81 0.26 0.31 0.99 0.38 0.39 1.28

Dry period 0.14 0.64 0.68 0.16 0.78 0.73 0.17 0.99 0.92
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Sensitivity analysis of GLUE estimates to the threshold values in the likelihood function
This section aims to address the uncertainty behaviors by a series of hydrological models
(ranging from conceptual to distributed models) constructed with different assumptions,
structures, running with different inputs. A sensitivity analysis is therefore conducted among
three typical hydrological models to illustrate their distinct performances in response to
different threshold values using the GLUE method. The illustration is done by calculating
model uncertainty with threshold values of 0.7, 0.6 and 0.5. The ARIL, P-95CI, AAD and ADA
for three hydrological models with different threshold values are compared in Table 6.

Results indicate that: (1) Decreasing ARIL, P-95CI and increasing AAD are found, when
the threshold value increases for all the three models. This means GLUE estimates are
sensitive to the choice of the threshold values based on three model simulations. As an
example (the daily runoff simulation by TOPMODEL in 1968 normal year), P-95CI, ARIL
and AAD are 81.69 %, 1.27 and 0.37 when the threshold value is 0.5. While they are 54.1 %,
0.87 and 0.52 corresponding to the threshold value of 0.7. (2) The best hydrological model
differs to different threshold values. For instance, the GLUE estimate of the daily runoff in
the normal year indicates the best performance (the highest P-95CI) is generated by
TOPMODEL and XAJ model, with threshold value of 0.5 and 0.7. In addition, a high P-
95CI value, narrow band-width, high degree of symmetry and small deviation amplitude,
cannot be obtained simultaneously. It is similar with the results presented byXiong et al. (2009).
(3) There are no identical changes of ADA when threshold value increases (or P-95CI
decreases). This is similar with the results (Alvisi and Franchini 2011) in the application of
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Fig. 3 Comparison of 95 % confidence interval of runoff with threshold of 0.7 using TOPMODEL. (a) in
1981 flood year; (b) in 1968 normal year; (c) in 1997 dry year
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the same index to evaluate the uncertainty bands obtained through Bayesian neural network
and fuzzy neural network.

4.2.2 Extreme Streamflows

Intercomparison for the uncertainty measures among the three hydrological models In this
section, the GLUE estimates of extreme streamflow (Q10 and Q25,) are herein used to
examine the uncertainty behaviors of three hydrological models in simulating streamflow
extremes (Q10 and Q25) in the headwater region of the Yellow River. Q10 (Q25) represents
the flow corresponding to 10 % (25 %) exceedence probability during 1960–2011.

To perform the evaluation in extreme flow simulation, a lower threshold value of 0.4 is
used. Fig. 5a and b show the 95 % confidence interval of Q10 and Q25 simulations by XAJ
model using the GLUE method. Fig. 5a demonstrates a poor performance of Q10 GLUE
estimates, where the observations fall outside the GLUE uncertainty bounds, especially in
the calibration period (1960–1986). Meanwhile, the P-95CI is below 50 %, suggesting the
other sources of uncertainty such as model structure are perhaps more important than
parameter uncertainty alone (Thorndahl et al. 2008). Whereas, a better simulation of Q25
is produced (P-95CI =71.74 %). The P-95CIs for GLU estimate of high-flows (Q10 and
Q25) show the TOPMODEL performs best among the three hydrological models, where the
uncertainty bounds include a large percentage of observations with 80.43 % (Q10, Fig. 5c)
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and 76.09 % (Q25, Fig. 5d). The imperfect simulations by HBV model (Fig. 5e and f)
suggest that the observations for Q10 and Q25 are often outside the uncertainty bounds
during the validation period (1987–2011).

Sensitivity analysis of GLUE estimates to the threshold values in the likelihood function
This section presents a sensitivity analysis of GLUE estimates for high-flows (Q10 and Q25)
to the threshold values (0.2, 0.3, and 0.4, Table 7). Table 7 shows that: (1) A high P-95CI
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value, narrow band-width, high degree of symmetry and small deviation amplitude, cannot
be obtained collectively. ARIL and P-95CI decrease and AAD increases, while the
threshold value increases for the three models. However, it is difficult to quantify the link
between the threshold values and ADA. This is similar to the GLUE estimates for daily
runoff. (2) There exists significant disparity between daily flow series and extreme stream-
flows in sensitivity degree to the threshold value in the likelihood function. In detail, the
change range for Q10 is up to 6.53 % when the threshold value changes is 20 %, while the
range for daily runoff is about 24.24 % as a result of rather large range for flow during dry
period (about 65.90 %, Table 6). Consequently, the GLUE estimates for high flow are less
sensitive to the choice of the threshold values than the daily runoff in TOPMODEL
simulations. However, the GLUE estimates for high flow are more sensitive to the choice
of the threshold values than the daily runoff in XAJ model simulations. Therefore, the
sensitivity of GLUE estimates for extreme flow to the threshold values depends on the
major uncertainty sources from parameter, model structure and inputs. (3) High P-95CIs of
GLUE estimate for high-flows (Q10 and Q25) show TOPMODEL generally performs best
in different threshold values. While XAJ model produces the smallest ARIL under different
threshold values.

5 Conclusion

In the work, uncertainty behaviors of three typical lumped and semi-distributed hydrological
models (HBV, XAJ and TOPMODEL) in simulating runoff processes and extremes using
the GLUE methodology are identified in the headwater region of the Yellow River, China.
The major points are summarized as follows:

(1) In general, the results show that three models can reproduce historical daily runoff
series with an acceptable accuracy. When the threshold value in GLUE estimate
equals to 0.7, it is found that XAJ model has good strength in simulating daily
runoff. In particular, the observations in dry period are completely within the
confidence intervals, suggesting the flow during dry period can be grasped well
by XAJ model. Nevertheless, there are always drawbacks for different models. The
daily streamflow in wet period are either underestimated or overestimated by XAJ
model. Moreover, the imperfect performance during dry period of TOPMODEL and

Table 7 Intercomparison of uncertainty measures in simulating extreme high-flows (Q10 and Q25) by three
hydrological models under different threshold values (0.2, 0.3, 0.4)

Measures High-flows 0.2 0.3 0.4

XAJ TOP HBV XAJ TOP HBV XAJ TOP HBV

P-95CI (%) Q10 69.57 86.96 71.74 60.87 86.90 67.39 49.97 80.43 61.13

Q25 80.43 80.43 76.09 78.00 78.26 71.74 71.74 76.09 69.25

ARIL Q10 0.41 0.55 0.49 0.36 0.52 0.47 0.30 0.49 0.42

Q25 0.46 0.49 0.47 0.43 0.45 0.45 0.38 0.41 0.40

ADA (m3/s) Q10 239.03 183.48 203.86 237.37 181.41 203.80 235.72 183.12 199.48

Q25 140.36 126.98 139.72 139.01 127.99 136.69 134.55 131.11 136.41

AAD Q10 0.46 0.28 0.34 0.53 0.29 0.36 0.64 0.31 0.38

Q25 0.34 0.30 0.33 0.37 0.33 0.35 0.40 0.36 0.37
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HBV model is dissimilar. The flow during dry period is always under (over)
estimated for HBV model (TOPMODEL), and both the PCI-95 values are below
50 %, indicating non-aleatory errors in input data and model structure remain
important. Hereby, it is discussed as following: Firstly, it is difficult to describe
spatial distribution of the runoff generation mechanism with lumped or semi-
distributed hydrological models. In addition, Xiong and Guo (2004) indicated the
reason why the moderate or even bad performance of TOPMODEL is shown.
TOPMODEL paid more attention to the runoff generation processes rather than
the water budget accounting, as demonstrated by the very simple linear relationships
used to estimate both the evaporation loss in the root storage zone and the vertical
water movement from the unsaturated zone to the saturated zone. As for the HBV
model, the runoff concentration is simplified by means of a triangular weighting
function. This will inevitably introduce uncertainties to a certain degree. Therefore,
the performance of TOPMODEL and HBV model in simulating low-flows is less
satisfactory.

TOPMODEL performs best in high-flows (Q10 and Q25) among the three
hydrological models. The uncertainty bounds include a large percentage of observa-
tions, about 80.43 % (Q10) and 76.09 % (Q25). However, the P-95CI in the GLUE
estimate by XAJ model is below 50 %. In addition to the effect of the model
structure, the prior distribution of parameter may influence the result of GLUE
estimate, in this study just the uniform distribution is selected, a further investigation
is needed to identify how some other prior distributions of parameter will influence
the model simulation.

(2) Results suggest that a high P-95CI value, narrow band-width, high degree of
symmetry and small deviation amplitude with respect to uncertainty interval, cannot
be obtained simultaneously. ARIL as well as P-95CI decrease and AAD increases
as the threshold value increase for the GLUE estimate from three models, while it is
difficult to quantify the relationship between the threshold values and ADA. The
performance statistics obtained using a variety of uncertainty measures for three
models confirm this point. However, there is significant disparity between daily
runoff and extreme streamflows in sensitivity degree to the threshold value of the
likelihood function. Jin et al. (2010) indicated the drawback of GLUE is related, to
some extent, to the subjectivity in choosing the likelihood function. Indeed, the
GLUE estimates for daily runoff indicate that the P-95CI, ARIL and AAD are
sensitive to the choice of the threshold values. Meanwhile, the selected hydrological
model which performs best in term of P-95CI (ARIL) varies with the threshold
value. While regarding to the high-flows (Q10 and Q25), whether the GLUE
estimates for it are more sensitive to the choice of the threshold values than the
daily runoff or not depends on which uncertainty source is more important, includ-
ing parameter uncertainty, model structure and input uncertainty. In detail, the best
P-95CI in the GLUE estimates of high-flow (Q10) is always produced by
TOPMODEL in different threshold values. The probable reason is that the param-
eter uncertainty is more important than the other sources of uncertainty such as
model structure.
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